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ABSTRACT

Design of multivariable systems is considered and design pro-
cedures are formulated in the lighf of the most recent work on model
matching. The word model matching is used ‘exclusively here to mean
matching the input-output behavior of two systems, In the frequency
domain the term is used to indicate the comparison of two transfer
matrices containing transfer functions as elements. The design of
multivariable systems is particularly compiiéated by the fact that tﬁe
transfer matrix is a ratio of two polynomial matrices. The use of
state variable feedback not only affects the pole positions, but also
alters the_positions.qf most of the zeros of individual transfer
functions due to interaction. Becéﬁse of these complexities, non-
interaction Eas been one of the main criteria of desién in the past.

This study concentrates on design methods where non-interaction
is not used as a criteria. Non-interacting design is obtained as a
special case of the more general interacting design. Two design methods
are considered. In the first method the design is based_solely upon
the specification of generalized error coeffiéients for each individual
transfer function of the overall system transfer matrix. The main
disadvantage of such a design is tﬁat it does not take into considera-
tion the transient response of the system,as the concept of error co-

efficients is based solely upon steady state behavior. Thus, the

. vii



viidi
transient respdnse of the sfstem ﬁay not be satisfactory. However, if
the transient response is satisfactory, the main advantages of the
first method is that it is simple and gives a realizable solution to
the problem,

The second design method is célled the pole fixing method
because in it all the system poles are fixed at preassigned positions.
In addition, the zeros of terms either abbve or below the diagonal
can be partially fixed via steady state error coefficients. This is a
considerable improvement over the conventional decoupled de;ign where
it might not.even be possible to decouple the system. Even if the
system were decouplable, some of the sfstem poles could be uncontrol-
lable. However, designing the system using the pole fixing method
requires that certain sufficiency conditions be met. In many cases
these sufficiency conditions may be satisfied by a name change in the
cutput vector, |

An example is worked to demonstrate the use of both design
methods. The special case of triangular decoupling and minimum con-

straints are discussed.



CHAPTER 1
INTRODUCTION

The problem of designing a linear multivariable system has long
occupied the minds of control engineers, especialiy recently in view of
its vast application in engineering and reiated fields. Most of the
earlier work is centered on designing noninteracting systems. Efforts
started as early as 1950 and continuéd through most of the 1960's
[Boksenbom and Hood; 1949; Kavanagh, 1956, 1957, 1958; Horowitz, 1960;
Morgan, 1964: Rekasius, 1965]. Falb and Wolowich [1967] first formu-
lated and proved neceséary and sufficient conditions for determining
whether or not linear state variable feedback (l.s.v.f.) can‘decouple
a multivariable system. They also gave a design procedure for placing
the poles of the decoupled system at desired places. Then Gilbert
{1969] gave a physical interpretation to the results of Falb and Wolo-
wich and explained the notibn of feedback invariance. Gilbert's work
prcﬁided the complete answer to the problem of decoupling a multi-
v§riable system using 1.s.f.f.

But the problem of design of multivariable systems was far
from solved, except for the special case of decoupling. Luenerger
(1567} devised a transformation maerix which puts the sfate equations
of multivariable system into a canonical form, similar to phase vari-
able form for the scalar case of single input-single output systems.

Wolowich and Falb [1969] made use of the cancnical transformation

1



devised by Luenberger [1967] and came up with startling'results on the
structure of multivariable systems.

While a lot of attention was devoted to'using dynamic compensa-
tion for multivariable systems [Wolowich, 1973; Moore and Sil?erman,
1971; Morse and Wonham, 1970; Pearson and Ding, 1969; Silvinsky, 1969]
studies continued utilizing l.s.v.f. for design of interacting control
systems [Ferg, 1971; Heinz, 1968; Anderson ‘and Luenberger, 1967]. The
design of interacting multivariable systems is given the name Model
Matching. In view of model matching some pertinment questions arise.

Does there exist a get of feedback and gain matrices {F,G} such
that whén applied to a giﬁen‘system the input-output behavior of the
system characterized by the frequency domain Fransfer matrix T(s)
matches a pre-specified input-output behavior.l Wolowich [1972]
answereé this question in great detail. He utilized the structure
theorem [Wolowich and Falb, 1969] and for the first time developed a
complete set of feedback invariants for multivariable systems. He also
gave necessary and sufficient conditions for Exact Model Matching, and
outlined the procedure to find the pair {F,Gl},if the necessary and
sufficient.conditions were met.

However, the main design question of what to do if‘the
necessary and sufficient conditions are not met remains unanswered.
Unfortunately, this is the most important problem a designer is likely
to face, The necessary and sufficient conditions for model matching
do not give any hint as to what can be expected from the system, or

what changes need to be made in the model transfer matrix to ensure
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that the necessary and sufficient conditions are éatisfied. The designer‘
is thus left with ne guidelines with which to proceed.

In this study a completely new and basic approach is taken to
the design of multivariable systems; The approach provided at least
a partial answer to the above queétions.- The approach taken in this
-study is based upon generalized error coefficients. The design speci-
fications for multivariable systems could either be expressed directly
in terms of generalized error coefficients or could be specified as
transfer functions. In the latter case the transfer function is
represented in terms of its Maclaurin series so that the coefficients
of the successive powers of s have a direct relationship with the
generalized error coefficients.

A design based solely on error coefficients may not be satis-
faqtory for the two reasons. First, only a specified number of error
coefficients can be incorporated into the design. Secondly, the
error coefficients describe the system input-output behavior only
after sufficient time has elapsed for system transients toc decay to
insignificant amplitudes. Since the pole positions are not known
until after the design is complete, decaying transisnts are not ensuvred
in advance.

A second design technique called pole fixing design methéd takes
care of fhe above uncertainty by pre-specifying all the pole positions
in advance. The main feature of this method is that in addition to
arﬁitrarily fixing the poles, it maintains enough freedom to specify

error ccefficients of one side of diagonal terms in the transfer matrix,
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thus in turn, indirectly specifying system zeros. This method has the
V“fo%lpwing distinct advantages over the conventional decoupled desigﬁ;_.
1. All the off-diagonal terms are not forced to zero,
2., There are no uncentrollable poles, and
3.  Those systems which cannot be deéouple& could very well be

designed using pole fixing method.

A disadvantage of the pqle fixing method is the requirement that
the system satisfy certain additional sufficiency conditions. However,
these sufficiency conditions are variant under the name chanée of
inputs and outpuﬁs and are also dependent upon the output matrix of
the system. Thus, in many cases the sufficiency conditions could be
satisfied by simple changes in the system output matrix.

This study has been organized as follows. In Chapter 2 nota-
tions are introduced and a brief treatment of background'material is
provided. This includes a discussion of the feedback invariants and
structure of the multivariable systems. The representation of a trans-
fer matri% as a ratio of two polynomial matrices is used to derive the
central result of this study in Chapter 3. The relation between the
error coefficienéﬁ and tﬁe components of polynqmial matrices represent-
ing the transfer matrix is obtained. This relation produces a series
of equations which can be evaluated in sequence.

Additional notations are given iu Chapter 4 as a means of
dencting the submatrices of a component matrix, An identity is intro-
duced té partition the multiplicétion of tﬁp matrices into multiplicaj

tion of its submatrices. The design freedom is iliustrated with the



help of Theorem 4.1. The-proof,of‘the_tﬁeorgm resuits in a
step*by—stef design procedure for ;hé design of multivariable systems
utilizing the generalized error-coefficients as the design criteria.
An example is used to illustrate the design steps.

Chapter 5 develops.the pole fixing design method. The short-
comings of the error coefficient design method are overcome by the pole
fixing method. Once again the design constraints are introduced via
Theorem 5.1. A step-by-step design procedure is given for a quick and
easy reference and the example of Chapter 4 is reworked using pole
fixing method.

This study is concluded with Chapter 6 where'the results of

this study are summarized and further research is suggested.



CHAPTER 2

STRUCTURE OF MULTIVARIABLE SYSTEMS

é.l Introduction and Organization of the Chqfter

.Tﬁis chapter provides a réview of existing-work on the structure
and exact model matching of multivariable sfstem.- Section 2.2 describes
the system representation in state variable form followed by some defini-
tions and notations. Section 2.3 describes a transformation [Luenberger,
1967) which produces a phase variable representation for multivariable
systems, The above transformation is used in Section 2.4 where the
structure theorem of Woiowich and Falb [1969] is explained and proved.
The advantage of such a structure is that it separates the system inpﬁt
output behavieor transfer matrix in two parts, one which is invariant
under étate variable feedback and, second, which is almost completely
dependent upon state fariable feedback. The above proéerty is used to
derive necessary and sufficient conditions for exact model matching
[Wolowich, 1972], as briefly discussed in Section 2.5.

The past work on the decoupling of multivariable systems has
intentionally not been discussed because almost all the information
about decoupling is provided by the structure theorem. Hence, in
Section 2?6 the problem of decoupiing is discussed as a speciai case
of the problem of exact model matching. It is shoﬁﬁ how all the

relevant information about decoupling can be obtained from the use of

&
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. 7
structure theorem and from the necessary and sufficient conditiocms fér
exact model matching of the multivariable systems.‘

Finally, this chapter is copcluded with a discussion of the
advantages as well as hazards of attempting to use the above mentioned

necessary and sufficient conditions for model matching. |,

2.2 System Representation, Definitions and Notations

Throughout the study it is assumed that the linear multivariable
time invariant open loop system is represented in state variable form

by following well-known equations.

X=AX + BU
Y=CX (2.1
where )
X e EN system state vector
Y e E system output wvector
UeE system input vector

The matrices A, B, and C are constant system matrices of appropriate

dimensions. The fellowing state variable feedback is considered
U=Ff{ +GR (2.2)

where F is mxn and G is mxm constant matrices and R is new refersnce

control input vector. With the state variable feedback as specified in



Eq. (2.2), closed loop state variable representation of the system is

given by

»

]
i

(A + BF)X + BGR

Y - cX . | (2.3)

While the system is described completely in the time domain,
much of the work contained here has been transformed into frequency
domain. The following definitions and notations prove useful.

Definition 2.1 Transfer Matrix: A transfer matrix is any

matrix whose elements are transfer functions representing
the input-output behavior of a single Input - single output

system in the frequency domain.

The transfer matrix aSsociated with _the closed loop system of Eq. (2.3)

is denoted by T(s) and is given by
T{g) = C(SI - A - BF) " 13G : (2.4)

Definition 2.2 Proper and Strictly Propef Transfer Matrices:

A transfer matrix is called proper (strictly proper)} if for

every transfer function element, the degree of the numerator
polynomial is less than or equal to (strictly less than) the

degree of the corresponding denominator polynomial.

The transfer matrix of the closed loop system of Eq. (2.3) given by
Eq. (2.4) is a strictly proper transfer matrix because there is no

direct feed forward from inputs to outputs.



Definition 2.3 Polynomial Matrix: A polynomial matrix is

any matrix whose elements are polynomials of degree greater

than or equal to zero.

A polynomial matrix is ﬁsuallf denoted by capital letter with explieit
‘S dependence unless otherwise mentioned. The transfer matrix of
Eq. (2.4) can be described as a préduct of two polynomial matrices as
T(s) = R(S)P(S)-l. Here P(s}—l represents the.inverse of the polynomial
matrix P(s).

Unless otherwise mentioned, the ith row and ith column of a
constant matrix is denoted Sy a subscript i and superscript i, respec-

th

tively; viz., bi denotes i*! row of B matrix and bj deonotes jth

column of B matrix. The ith yow of a non constant matrix is denoted
by a subscript on capital letter, viz., Pi(s) denotes it! row of PB(s).
The following notations are equivalent for any constant or

polynomial matrices.

B=[b,,]

i3

P(s) = [pij(S)] (2.5)

where b_j denotes the element at the cross section of it row and jth-
i .

column of B matrix and pi (=) donotes polynomial at the cross section

J
of ith row znd ith column of poiynomial mutrix P(s). The dererwinants

of. a constant matrix B and a non constant matrix P(s) are denoted as

follows
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determinant ‘B = ]Bt

determinant P(s) = |P(s)| - (2.6)

2.3 Luenberger Cancnical Transformation

Various canonical transformations are available for multivari-
able systems. The one given by Luenberger [1867] is particﬁlarly useful
because the matrices representing the transformed system can be parti-
tioned into submatrices which have a phase variable form., The property
of the phase variable representation of a system is that for the scalar
case of single input-single output system, all the relevant information
about the input output behavior of the system is contained in the last
row of system matrices. The system tranSfeﬁ—fupction can be written
by inspection of system matrices.

Even though ﬁhe above does nmot hold in the multivarible case,
i.e., the transfer matrix cannot be written by inspection, the trans-
formation is useful because it separates the system transfer matrix in
an invariant part and another part which arbitrarily depends upon state
variable feedback except for its form. This is similar to the scalar
case where it is well known that zeros of transfer function are iﬁvariant
and the poles can be arbitrarily placed by state varilable feedback.

Only the order of system cannot be increased.

To find fhe transformaticn matrix and the transformed svstem,
consider the system described in Eq. (2.1). It is assumed that the
input mafrix B has rank m (otherwise, the m inputs are not indepen-

dent) and the odtput matrix C has rank m (otherwise, the m cutputs are



a

. not independent). It is also assumed that the system described in Eq.:
(2.1) denoted by {A,B,C} is controllable, i.e., the nxnm controllability

matrix

[B: -AB: ... A B 2.7

haé rank n.

That is to say the above matrix has at least n independent
vectors; however, in generél there may be more than one set of n inde-
pendent vectors.

The following algorithm finds a transformation matrix denoted
by Q which has the properties as described above.

Step 1: Find the first n independent columns of the controlliability

matrix given in Eq. (2.7). Let the B matrix be represented by

B = [bl b% ... b"]

i : .
where b~ represents ith column of B matrix.

Step 2: Rearrange the n independent columns found in Step 1 in the

following manner

. - -1
[bl,abY, ..., Acl Ll o2, ..., A% AR (2.8)

where as indicated Ajbl is the it column of nxm matrix AJB. Notice

that the above rearrangement groups together oi independent vectors

th

which are related to i column b* of the input matrix B. Thus,

informally speaking, the nth order multivariable system has been

th

divided inteo m subsystems with the i subsystem having order o..

11

e

an g
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Notice that

and

Step 3: Define the integers dK and the lxn row vectors RK as follows:

K
d,= ) &, for X-=1,2, ..., (2.9

K dK th row of the inverse of the matrix

o
Ir

in Eq. (2.8)

Step 4:  Form the nxn transformation matrix @ as follows:

ot

. 2 AO. 29— 1

om—1 '
N 7 (2.10)
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If the transformation % = (X is used, where Q is the nonsingular

A .
matrix as given above and X is the new state vector, then the new system

equations are given by

APON
X= + BU
Y = & (2.11)
where
A - -
A= qu™ A = g Mo
B = QB = B=qB
¢ = cq? ¢ = &g (2.12)
and the state variable feedback is given by
y =%+ CR , - | (2.13)
where
Fo=F and G =¢ (2.14)

As mentioned above, the main advantage of such a transformation

is that the matrices A and B take a special form as shown below.

>
I

A - Y ‘ (2.15)
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where Aij for i=j is a o, X 0 matrix in phase variable form as shown

below.

] 0 0
0
Ay = :
0 1
i ee. KK (2.16)

where *'s denote non zero terms in general.

For i # j, A is g, X 0, matrix with all but its di'th row iden-

ij
tically equal to zero. The matrix B in Egq. (2.8) takes the following

special form,

>
]

T O e

d;,1

> O

Pa,,1

o> e

d.1

(=24

dy,2

o>

dy,2

o>

d»2

or o

dl Py

L )

Tr Q

(2.17)

where dK's are as defined in Eq. (2.9). Thus, 6n1y dK th rows of B are

non zero.
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. It is worth noticing at this point that the transfbrmation
matrix Q obtained in Eq. (2.10) is not the only transformation matrix
which places A and ﬁ.in the form given in Eqﬁations'(2.15) and (2.17)
respeqtively. In general there may be other arrangements for picking
n independent columns out of the controllability matrix of Eq. (2.7)
" which lead to a transformation matrix so that A and B have the above
mentioned forms. That is to say, in general the ¢'s (roughly speaking

o, is the order of ith subsystem) are not unique, but in the absence

i
of any other general method for finding the transformationm matrix Q,

the algorithm described in this section is used throughout this study.

2.4 Structure Theorem of Wolowich and Falb

To be able to better understand thé structure theorem it is
neéessary to give a few definitions introduced by Wolowich and Falb [1569]
in connection with the structure theorem, |

Definition 2.4 §E: 5% is defined as the mxm diagonal

matrix as given below.

71 0 o ... 0 1
o2
SO _ 0 8 0 0
0 0 0 ..o s : (2.18)

ol

This the itP diagonal entry of the matrrix 3% is %1,
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L]

Definition 2.5 S(s): S(s) is defined as the following nxm

matrix of single term monic polynomials.

o -
: : P S, (s) o‘ 0...0
s71-1 ¢ 0 1o §,(8) 0 ... 0
S5(s) = |0 1 0 =
0 s92-1 0 0 0 0 ... 5 (s)
) 1 L o
0 0 570" 1_
(2.19)
where
0
: s
5;(8) = |s?
(O1-1

is a Ui x 1 column vector.

Definition 2.6 g; A is defined as mxn matrix consisting of the
m ordered dK th rows of A = [ﬁij]._ Thus, A is given as fellows:

Fag A ”~ =1
adlsl adls-? e adl:n

adz.vl adZsz . adz:“

=t
]

m n R (2.20)
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Definition 2.7 E:- T is defined as the mxm matrix consisting
of the m ordered dK the rows of'ﬁ = [%ij]. Thus, B is given

as follows:

B b b, ]
d;,1 dy,2 7 d; ,m
~ -~ -~
b b e b
‘ﬁ = dz,l dz,g dz,m
A -~ ~
b b ... b
Ldmsm dmsz dm,ni (2.21)

Equivalently if a matrix E is defined as follows:

0
0
0 o . 0
10 0
E= {0 O 0
0 0 0
: /
0 . 0
1 . 0
0 .
0 0 1N ' (2.22)
Then clearly

£ = EB : (2.23)

In view of above definitions and the form of transformed

matrices A and B as given in Equaticns (2.153) and (2ﬂ17), respectively,
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notice that BF has all but the m ordered dK th rows zero. Thus, A + BF

has exactly the same form as A. Let

le ®m2- vt Qmm (2.24)

Then for i=j, Qij is g, X gj matrix in phase variable form as

shown in Eq. (2.16) and for i # j, ¢,, is a a; X Gj matrix with all but

1j
last row identically zeros. Thus, ¢ has exactly the same form as A as
given in Eq. {2.15). |

Hence, as in Eq. (2.20), define 3 = A +BF as a mxn matrix
copsisting of the m ordered dK th row of the matrix ¢ as defined above

in Eq. {2.24) and partition it into m2 row vectors as follows:

e End Tl ﬁ
%31 %12 v Y
$=A+3BF = 2., @22... 522
le T2 Qmm_ (2.25)

Then, Eij is 1 x o, row vector obtained by partitioning the di th row

]

of & into m row vectors. Thus

[(Dil ®i2 Py (Pim] = {¢digl ¢di,2 LRC I ¢di,n] (2.26)
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The structure theorem is now derived which essentially separates
the system input-output transfer matrix into invariant and dependent
parts with respect to state variable feedback., As mentioned earlier in
fhe Definition (2.1),_for the multivariable system of Eé. {2.1) with
feedback given in Eq. (2.2), the input-output transfer matrix is given

by Eq. (2.4}. Substitution for A, B, and G from the set of Equations

(2.12) in Eq. (2.4) gives _

n
o
~
o~
)]
H
|
'Ol
.y
o
1
DI
'...d
[eetd
o
~
A
L
1

T(S)

Eal A . .
Substitution for A + BF from Egq. (2.24) in above gives

T(s) = &¢st - 371 B6 (2.27)
where

F=FQ (2.28)

It is claimed by Falb and Wolowich [1969] that the system trans-

fer matrix of Eq. (2.28) can be written as follows.

(s) = & 5Gs) LA™ (57 - § s¢en1 ™ @29
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or, equivalently

SI-8) L e =Cs(s) [s°-8s¢)1™ B (2.30)

where SG, S(s), T are as defined in Eqs. (2.18), (2.19), and (2.25),
fespectively. In their proof of the claim, B is not as general as given
by Eq. (2.17). The proof given below is more clear and is consistent

with the notion introdﬁced in this section.
Post-multiply both sides of Eq. (2.30) by G_l. Then, to prove

Eq. (2.30), it suffices to prove the following:
(1 - &)L § = 5(s)[s° - ¥5(s)1 7 E

After a-trivial manipulation, 1t can be shown that it suffices to prove

the foliowing:
(sI - @) s(s) = 8 3L [57 - B5(¢s)]

A s o .
After substituting for 3 from Eq. (2.23), it now becomes necessary ic

prove only the following:
(sI - 9) s(s) = E[s° - ¥5(s)] (2.31)

Expansion of the left hand side of the above equation results in



(sI-¥)S(s) =

I

11 12

-8, 8170,

"(sI-<I>ll)Sl(s) -%..5

1272

~2,,8, (s (s1-2,,)5, ()

2151 ¢8) o2
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-¢, 1[s; () 0 ... 0]
-sz 0 Sz(s) aen 0
sI—@umL L 0 0 . Sm(s)_

(s) -4, S_(s) ]
_QZmSm(S)
(s) (s1-0_)S, ()
(2.32)

Now examine the (i,j)th block matrix in the above equation for 1=j

(sI—¢ij)Si(s) =

s -1 0 0
D s -1 )
o o 0 s
% * * %
= |0
0
Gi_‘”
f ijSi(s)_

$=%41,di ]

S i—2

oi-
91 1




The above is a g; X 1 vector with all but the last element non

zero. For i # j

(s) =

~5..S
1373 00 ... 0 0lls

x k... % % $%i-1
0 -
= |0
0
-3, .8 (s
7 P15

Again, this is a ci x 1 column vector.

After substituting for these block matrices in Eq. (2.32), the

following is readily obtained.



(sI-¢)S(s) =

- OO

L-qmlsl(s)

vl _ %
g @llsl(s)

el

—@2151(33

h—®mlsl(s)

—@1252(5) .es
o2 _ 3
s @2252(5) cas

—@mzsz(s) .

where E is as defined in Eq. (2.22).
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- "

—lesm(s) :

félmSm(s)

s? - ’é’msm(s)E
(2.33)
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The above Eg. (2.33) can be written as follows:

(sT-¢)S(s) = E{[s°1 0O 0 ...01
0 2 0 ... 0
0 0 ——
(3 3 3 | Fs 0 ﬂ
11 fyg e PS80
) @21 @22 . @zm 0 SZ(S) O g
| 'ml ¢m2 ’ EMLL? 0 . Sm(s)_)

and substituting for 59 and s(s) from Egs. (2.13) and (2.19), respec-

tively, one gets
(s1-2) = E{s’ - ¥5(s)}

The above is exactly the result claimed in Eq. (2.31). Thus, the claim
A A

of Falb and Wolowich [1969] is demonstrated to be true for B of

Eg. (2.17), which is more general than the one used by them.

it is thus established that system input output transfer matrix

T(s) can be written as follows:

) = & s(e) (@0 Hs® - FsaN
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-

After substituting from Eq. (2.25) for E one obtains, from above

T(s) = & s¢s) (BT {s° - & +FH s(s)}17L

that is,

T(s) = R(s) P(s) " (2.34)

where
R(s) = & 8(s) (2.35)

is a mxm polynomial matrix independent of state variable feedback and
thus forms the invariant part of transfer matrix for any state wvariable

feedback of the type shown in Eq. 65.2), and

P(s) = ()L (8% - & + B8 s(e)}] (2.36)

is also a mxm polynomial matrix. Since P(s) is a function of both F
and G, P(s) takes into account all the effects vf the state wvariable
feedback of Eq. (2.2);

It is worth noticing at this peint that P(s) not only accounts
for all the feedback and gain, but 'has a2 unique form for a given set of
sigmas. Recall the sigmas are fixed (even though not unigque). Also,
netice that the coefficient of the highest order term in each (ij)th

polynomial is given by'the corrésponding {(i,j)th term in the matrix
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(ﬁC)_l. Thus, by choosing G properly, coefficients of highest order
term in each polynomial of P(s) can be'arbitrarily manipulated.

The coefficients of all other lower degree terms in the poly-
nomials of P(s) can be arbitrarily placed by proper choice of feedback
. matrix F because B is a nonsingular ﬁatrix.

Thus, the conclusion is that, except for its form, the poly-
nomial matrix P(s) is almost completely arbitrary. The only exception
is that the matrix coefficients consisting of the highest degree poly~
nomial in each column of P(s) must be a nonsingular matrix because that
matrix is (ﬁb)-l which is a nonsingular matrix. The above property of
a polynomial matrix is referred to as being column proper by Wolowich
[1972]. |

2.5 The Necessary and Sufficient Conditions for
Exact Model Matching

.The term model matching is more easily explained in the scalar
case of single input-single output systems. Given a scalar system
(plant) and ; scélar model if by some means (here by state variable
feedback), the plant input—output transfer funetion can be made equal
to the model transfer function, then the system (plant with feedbéck5
is séid to be matched with the model because their input output behav-
for is identical. In the scalar case it is wéll known that

@j The zeros of plant transfer function are feedback invariants.

2) The order of the closed loop plant can not be increased by

state variable feedback.
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3) If the plant is controllable, then the poles of the plant
transfer function can be arbitrarily placed by using
state variable feedback.

4) The closed loop gain can be adjusted at desired level.

Knowing the above feedback invariants and dependents, the necessary and
sufficient conditions for exact model matchiﬁg are easily obtained for
the above scalar case and are well known. Namely, the system can be
matched to the desired closed loop transfer function, that is, the
model, by state variable feedback alone if, and only if,

1) The model has zeros at the same place as that of the plant.

2) The pole zero excess of the model is the same as that of

the plant.
3) If the model has zeros other than plant zeros, they must

cancel with the model poles.

In the scalar case the knowledge of the above is necessary and
sufficient conditions for model matching lead directly to a design pro-
cedure. Even though the term exact model matching for multivariable
gystem is thought of as just an extension of the scalar case, it is
actuvally more than this, 1.e., instead of matcﬁing two transfef functions,
one has to match two tramnsfer matriées. Several additional definitions
are needed to extend the discussion to the multivariable case.

Definition 2.8 Unimodular Matrix: A polynomial matrix is called

unimodular if the determinant of a amatrix is a non zero polynom-

ial of degree zero, i.e., 1s a scalar.



Definition 2.9 Division of a Polynomial Matrix: A polynomial

matrix R(s) is said to be right [left] divisible by another
matrix H(s) 1if R{(s) H(s)“l [H(s)"lR(s)] is also a polynomial
matrix. (Consequently, H{(s) is called right (left) divisor

of R(s).)

Definition 2.10 Relatively Prime Polynomials: Two ot more

polynomials (taken together) are called relatively prime, if

there does not exist any polynomial of degree greater than zerc

which divides all the polynomials simultaneously.

Definition 2.11 Relatively Prime Polynomial Matrices: Two

polynomialAmatrices are said to be relatively right [left]
prime, If there does not exist any non-unimodular matrix which
right [left] divides‘both the matrices. (Notice that any uni-
modular matrix divides any polynomiél matrix and, hence, while
making a test for relative primeness only pon-unimodular

matrices may be considered.)
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The necessary and sufficient conditions for exact model matching

are given in the following two theorems which are due to Wolowich [1971,

1972].

Theorem 2.1. A (mxm) rational strictly proper transfer matrix

can elways be factored az the product.

T(s) = R(s) P 1(s) (2.37)
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where R(s) and P(s) are relatively right prime polynomial
matrices, respectively, in the Laplace operators, with P(s) non

singular and column proper,

A formal constructive proof of this theorem is given in [Wolowich, 1971]

and is not repeated here.

Theorem 2.2, Consider the system given in Eq. (2.1} with
‘{A,B} contrellable and B of full rank m < n, and let the

the model transfer function be given by
T (s) = R (s) P_1(s) (2.38)
m m n .

where Rm(s) and_Pm(s) are relatively right prime polynomial
matrices. There exists a linear state variable feedback
{(1.s.r.v.) pair {F;G}, with G non singular, which satisfies the
felationship:

T(s) = C(sI - A - BF) "8G = R(s) 2" 1(s)

= Rm(s)'p;ll(s) = T_(s) (2.39)

if, and only if, for some non singular polynomial matrix, H(s)

the feollowing three conditions hold:

1) BR(s) = Rm(s)H(s), i.e., R(s) is left divisible by Rm(s).

2) The m ordered 9y of Pm(s)H(s) are identical to those of P(s).

3) Pm(S)H(s)_is column proper.
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 The proof of sufficiency 1s constructive, and simply involves equating
Pm(s)H(s)'to P{s), once an appropriate H(s) has beenlfound, i.e., from

Eq. (2.39) and substituting for P(s) from Eq. (2.36)
P_()H(s) = B(s) = B! [s7 - (a +FF) s(s)] (2.40)

Since Pm(s)H(s) is column proper, the mxm matrix consisting of the
coefficient of highest degree s terms in each column of Pm(s)H(s) is

non singular. Let this matrix be D then

D= (Bey ™t
oY
~ =1
G = (DB) : (2.41)

The corresponding F can thep be determined by first premultiplying

Eq. (2.40) by (BG), and then substracting s° from both sides, 1.e.,

(86) B _(a)H(s) - 8% = - & + TF)s(e) O (2.42)

Since the m ordered g's of Pm(s)H(s) are rhe same {condition 2)
as that of P(s), in the left hand side of ébovq Eq.'(2.42), a complete
cancellation of Sd occurs, and the left hand side could be written as

-M S(s) where M is some constant matrix. Hence

-M S(s) = -(A + BF)S(s)

The above is satisfied if the following holds



31

R4+BF =M
or
F =1tk
or
F=Fq= {31 o-3)} @ (2.43)

Thus, the set {F,G} is uniquely determined for a given H(s), which satis-
fies the conditions of Theorem 2.2,

To establish necessity, consider Eq. (2.39); since P(s) is non-

singularr
-1,
R(s) = Rm(s)Pm (s) P(s)
= R (s) P¥(s) P(s)/ [P (s)] cz.zm)‘
where P;(S) is adjoint Pm(s) and IPm(s)l = dat. Pm(s).

Since Rm(s) and Pm(s) are relatively right prime, it follows that
[MacDuffee, 19256] there exists two polynomial matrices Ml(s) and Mz(s),

such that the following relation is satisfied.

Ml(é)Rm(s) + My (s) P_(s) = I_ | (2.45)

where Im is the mxm identity matrix.
Postmultiplying both sides of Eq. (2.45) by P:(s) P(s), one

obtains
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M ()R (s)PX()P(s) + M,y(S)P (S)PN(S) P(s) = B (8) B(S)  (2.46)

But from Eq. (2.44), ]Pm(s)l divides-Rm(S)P;(S)P(S) because R(s) is a

polynomial matrix; also because
* _ .
P (s) PX(s) = [P (8)] I

]Pm(s)] divides both left side members of Eq. (2.46), which implies it
must also divide the right side of Eq. (2.46).

It can thus be concluded

P;(S)P(S)

-1
P "(s) P(s) =
: LROT

is a nonsingular polynomical matrix, since it has been established

|Pm(s)| divides P;(S)P(S). -But from Eq. (2.44)

R () [P2'(s)P(s)]

]

R{s)

il

R (s) H(s) ' (2.47)
m

1l

where H(s) P;I(S)P(S) is a polynomial matrix. It is thus proved that

R{s) 1is left divisible by Rm(s) which is condition 1 of the theorem.

Also since

H(s) = P_"(s) P(s) | (2.48)

= P (s)H(s) = P(s) (2.49)
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Equation (2.49) directly implies conditions 2 and 3 of the theorem and,
hence, the theorem is proved.
In summary, finding a pair {F,G} for exact model matching con-
sists of the following steps:
{2) finding the transformed representation of the system.
(b} factoring the desired transfer matrix (model) Tm(s) as a
product of two relatively prime polynomial matrices
R (s) P-l(s).
m m
(¢} determining the appropriate H{s), if one exists.

{d) determining the pair {F,G} by coﬁ?aring Pm(s)H(s) with P(s).

There are algorithms available to perform the first two of these steps.
If the system is invertible, i.e., if R(s) has rank m, then H(s), if it
exists, is uniquely given by Eq. (2.48).

However, note that just employing the above equation does not
always result in a proper H(s) which satisfies all three conditions of
Theorem 2.2. Thus, in general, there is no algorithm to find a suit-
able H(s}, but if the system is invertible, then all one can find i=s
whether there exists or not an H(s) which satisfies all the th;ee condi-
tions of Theérem 2.2.

It is clear from the above discussion that the necessary and
sufficient conditions for exact model matching, as given in Theorem 2.2,
can be succegsfully employed to test whethgr a gilven system could be
matched to a given model (even though the test is cumbersome). However,

unltike the scalar case, the necessary and sufficient conditions fail to

predict what can be matched to the system. In terms of the design no
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hint is given as to what changes are‘required to satisfy the necessary
and sufficient conditions if a design being evaluaﬁed fails to meet
these conditiogs. The only case where these questions are completely

answered, is the case of a decoupled model, which is discussed next.

2.6 The Problem of Decoupling

Necessary and sufficient conditions for decoupling a multivari-
able system were first given by Falb and Woldwiﬁﬁ [1967] and were inter-
preted by Gilbert [1969]; The above work has been examined in detail by
others as well [Slivinsky, 1969; Ferg, 1971; Agrawal, 19721, and, hence,
no attenpt is made to repeag it. Rather, it is assumed that the multi-
variable system in consideration is decouplable, i.e., necessary and
sufficient conditions for decoupling éré satisfied. Let tlie following
decoupled transfer matrix be realizable and nonsingular.

-

[ nyq(s)

dp, ()

mm ’ (2.50)

where nii(s) ig relatively prime to dii(s) for i =1 ... m.
The above aséumptions imply that there exists a pair‘{F,G} which
realizes Eq. (2.50) and the strucicre theorem of Section 2.4 implies that

Td(s) can be written as follows:

I

T,(s) = R(s) P~ (s) | (2.51)
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where R(s) and P(s) are as given in Egqs. (2.35) and (2.36), respectiﬁely.

Post multiply both sides of Eq. (2.51) by P(s) to obtain
T4(s)P(s) = R(s) - (2.52)

Now consider the ith row of both sides of Eg. (2.52) which is given by

a,, (s) )
0...0,m,0...0P(8)=Ri(s)
ii
i.e.,
0, () _ .
E;;TET_ Pi(S) = Ri(s) N (2.53)

where as mentioned previously in Sec. 2.2, a subscript of i on a matrix
denotes ith row of the matrix.

Let us assume pi(s) and ri(s) to be the greatest common divisor
of the elements in Pi(s) and Ri(s) ;éspectively, and let Pi(s) and Ri(s)
be the prime polynomial vectors left after taking out fhe greatest com-
.mon divisor polynomials pi(s) and ri(s). Then the following relation is

obtained.

Pi(s) p; (s) Pi(S)
Ri(s) = ri(s) Ri(s) - (2.54)

Substituting for Pi(s) and Ri(s) from above in Eq. (2.53) and multiplying

both sides by dii(s) the following result is obtained.

{nii(S) pi(s)} Pi(s) = {dii(s)ri(s)} Ri(s) (2.55)

Notice that {nii(s) pi(s)} is a polynomial multiplying a prime polynomial

vector Pi(s) and similarly, {dii(s) ri(s)} is a polynomial multiplying
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prime polynomial vector Ri(s). The only way the above is possible is
that

Pi(s) = k Ri(s)

which from Eq. (2.55) implies
n, ., (s) p;(s) k = dy (8 r,(s) (2.56)

where k is a scalar nonzero constant. From above Eg. (2.56){ one

obtains the following:

k nii(s) ) ri(s)
dyyG& pyle) (2.57)

Yow since nii(s) is‘relatively prime to dii(s), there must exist

a polynomial £(s) of a degree greater than or equal to zero, such that

ri(s) k nii(s) £(s)

p, (e dii(s) f(s) (2.58)
From Eq.'(2.§7) and Eq. (2.58), it is clear that all the zeros
of jth subsystem [zeros of nii(s)]axe confained in zeros of ri(s). Tn
addition, therelmay be other zeros of ri(s) [zeros of f£(s)] which cancel
with zeros of pi(s). To show that zeros of ri(s) need not cancel with
zeros of pi(s); i.e., all the zeros of ri(s) do .appear as zeros of 1th

subsystem, unless otherwise intended, it only need be shown that there

exists a pair {F',G} such thact -

e e L
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ri(s) _ k nii(s) £(s)
p;(s) B d (s} £'(s)

(2.59)

where pi(s) = dii(s) f'(s) is relatively prime to ri(s).

Let us choose £'({s) such th;t it is relatively prime to f(s),
but the highest degree term in both polynomials is exactly the same.
Thus, the coefficient of highest order term in p'(s) is the same as that
in pi(s), and the degree of p'(s) is equal to the degree of pi(s). Now

form the vector polynomial
" = ! v
PY(s) pi(s) Pi(s) ‘ (2.60)
where Pi(s) is defined in Eq. (2.54), namely

Pi(s) = Pi(S) Pi(s) (2.54)

Equations (2.60) and (2.54), together with the fact that pi(s) and
pi(s) have the same degree and the same coefficient of the highest degree
term, imply that.P;(s) has the same form as Pi(s). Then, if P(s) is
column propér, the P"(s) is alsc column proper, where
Py(s)
P(s) = | :

P" (s)

That is to say, if there exists a pair {F,G} which realizes P{(s), then

there exists a pair {F',G} which realizes P"(s).
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It is thus proved that Eq. (2.59) holds, i.e., zeros of ri(s)
need not cancel with the zeros of p;(s), Since it has already been
shown that zeros of ithlsubsystem are contained in zeros.of ri(s), it
now implies that zeros of ri(s) are fhe zeros of ith subsystem unless
they are intentionally cancelled with the poles of ith subsystem.
— Since R(s) is invariant, Ri(s) and, hence, ri(s), is invariant.
It can thus be concluded that zeros of ri(s} are invariant zeros of
jth sqbsystem, if decoupling is to be maintained. Also, all the poles

of :'Lth

subsystem can be arbitrarily placed becausg pi(s) can'be made an
arbitrary polynomial except for the coefficient of highest degree term
without changing the form of P(s) and without affecting its property of
column properness.

The actual order of ith gubsystem is easily obtained because
the degree of pi(s) equgls'the sum of the degree of ri(s) and the pole

zero excess of the ith

subsysten, both of which are known.

The only other information that remains tc be obtained concerns
the so-called uncontrollable poles. It is well-known that i1f the sum of
the orders of all m subsystem does not equal n, the order of the overall
system, then theré are some poles of the system which are unaccounted
for. Gilbert [1969] and Silvinsky [1%69] called theﬁ uncontrollable
poles because these unaccounted poles cannot be controlled by state
variable feedback, if exact decoupling is to be maintained.

In practice, seldom is the model or the feedback so accurate as

to be able to force the system to be exactly decoupled. Thus, these

uncontrollable poles appear togethérrwith the other éubsystem poles
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and only in case’of exact decoupled system do they cancel with system
zeros at exactly the same posi;ioﬁ.' Thus, if any of these uncontrollable
- poles are in the right half s plane, then the system is an unstable sys-—
tem. There is nothing one can do about these poles if decoupling is to
bg preserved because these poles aré feedback invariant. So to ensure

a stable decoupled system, one must know the positions of these so-called
uncontrollable poles. It is shown next that the position of these poles
is known from the knowledge of R(s), the invariant part of the system
tranfer matrix, without even actually decoupling the system.. Consider

Eq. (2.51) and take the determinant of both sides

7, | = RGP | = [R(e)] [P 7o)
= |r()| /|p(o) |
or
oong
T % - {R¢) | / |B(8)] (2.61)
i=1 ii '

‘Now, from Eq. (2.54) Ri(s) = ri(s) R'{s). and hence,

rl(s) Ri(s)
R(s) = ;

rm(s) Ré(s)
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and
lR(s)] = T r, (s) IR"(s) |
i=1
vhere
.
Rl(s
R'(s) = | :
, .
Rm(s) ‘ (2.62)
Substituting the above expression for ]R(s)l in Eq. (2.61), one

gets

T 1, (s) [R'()]
m n,,(s)’ TI. t
'rr ii - i=1
i=1 44408 [P (s) ]

ny4(s) ' :
Substituting for 3059 from Eq. (2.57), one gets
: ii

-f? r,(s) [R'(s)|

e 08 iy
bl Kl (8) =
i=1 © Pit |P(s) ]
or
Kl - IR' (s
jui}
TT e (e P | (2.63)
=1 . ] :

where K4y is some scalar constant.
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Since the left side numerator is a nonzero constant in Eq.
(2.63), the right hand side numerator polynomial |R'(s)| must divide its
denominator polynomial |P(s)|. Thus, zeros of [R'(s)[ must be zeros of
IP(s)l. But zeros of ]R'(s)] are invariant under state variable feed-
back (bécause R(s) is invariant and, hence, R'(s) is invariant) and
zeros of lP(s)| are the overall system poles. That is to say, zeros of
]R'(s)[ form the invariant poles of overall. system. These invariant poles
are the so-called uncontrollable poles of &he overall decoupled system.

Thus, these uncontrollable poles are actual polés of.thelover*
all system and. are cancelled by zeros in the same-position if exact
decoupling can be obtained. However, as mentioned gatlier, in practice
seldom is the model or feedback and gain s¢ accurate as to produce
exactly the decoupled system. Thus, rarely is.the pole zero cancella-
tion exact. That is to say, if any of these uncontrollable poles are
in the fight hand & plane, then the system is bound to be unstable iﬁ
decoupled,

Since R(é) is completely kmown |R'(s)| is known and hence
positions‘of uncontrollable pole can be found in advance without com-
?1eting the actual design of the decoupled system. If any of these
'poleslare in right hand s plane, one might as well give up the idea of
decoupling the system. However, it should.be remembered that the so-
called unéontrollable poles are uncontrollable only as long as de-
coupling is required. Otherwise, if the overall system -is controllable,

all the n poles of the overall system can be arbitrarily placed and
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thus, a completely stable system could be obtained if decoupling is not

a criteria.

2.7 Summary and Conclusions

The main objective of this chapter has been to provide a compre-
hensive review of past and recent work on multivariable systems. Follow-
ing the comments on system notation and a few definitions, Luenberge;'s
[1967] canonical transformation is described to represent multivarible
systems in phase valuable form. WNext, it is shown how Wolowich and Falb
[1969] used this transformation to find a structure for multivariable
systems. The main advantage of such a structure is that it separgtes
the system input output transfer matrix into state feedback invariant
and state feedback dependent polyncomial mafrices. This property is used
to‘find necessary and sufficient conditions for exact model ‘matching.
Lastly, the special case of decoupliﬁg is discussed and if is shown how
the structure of multivariable systems in conjunction with necessary and
sufficient conditions for model matching can be used to find all realiz-
ability information about decoupled models.

However, except for the decouplgd medels, it has been shown that
;He necessary and sufficient conditions for exact model matching fail to
produce any realizability criteria. Thus, the necessary and sufficient
conditions are useful only for testing whether a given model can be
realized from the system. Even the test 'is cumbersome and.difficult
computationally, because it requires that the model transfer matrix be

. _ -1
put into the form Tm(s) = Rm(s) Pm {s) where Rm(s) and Pm(s) are
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relativelf right prime polynomial matrices. Thus, if the test fails,
then the designer has to start all over again to find some other model
for which the test conditions might be satisfied. However, he has no
guidance as to what changes to make énd no -assurance that the new model
might be any more realizable than the previous one,

| In the next chapter an important result is obtained which is
subsequently utilized in the following chapter to givé'completely new
and s;ep—by—step design procedures for the ‘design of multivariable

systems.



CHAPTER 3

THE DESIGN EQUATION

3.1 Introduction and Organization of the Chapter

This and the following chapters form the main contribution of
thie study. The results of this chapter fofm the backbone for tﬁe
design methods presented in the next chapter.

In Section 3.2 the concept of generalized error coefficients is
extended to the multivariable case. The transfer matrix T(s) and the
two polynomial matrices R({s) and P(s), whicﬁ are state variable feed-
back invariant and dependent respectively, are-represented in terms of
théir copponent maFrices. lThe notation for the derivatives of these
matrices is also introduced. |

In Section 3.3 a result is obtained which relates the deriva-
tives of the polynomial matrix R(s) with the derivatives of the transfer
matrix T(s) and the polynomial matrix P(s). The next section, 3.4,
utilizeslthis result to give a2 relation among the component matrices of
R(s).: P(s), and T(s). This relation is the main result of the chapter.
Lastly, a theorem is proved which is vital to the application of the
maiﬁ result as described above to therdesign of multivariable systems,

The thecrem leads directly into the next cuapter.

44
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3.2 The Generalized Error Coefficients | -
for Multivariable Systems

For the scalar case oﬁ the single input-single output system,
the generalized error coefficients are directly obtained from the
Maclaurin éeries expansioﬁ of thé transfer function of tﬁe system
[Truxal, 1955] as given below. Let t{s) be the transfer function of a
single input-single output system and y(s) énd u(s) be the Laplace trans-

forms of the output and input, respectively, then

y{s) _ - p 1 __1 2 -
sy " t(s) T+ & ST ET s ... (3.1)

In the classical and original definitions

k,p = position error constant
‘k_V = velocity error constant
kh = acceleration error constant

The above error coefficients are measures of the steady state errors if
the input is a unit step, unit ramp, unit parabolic function, and so on,
respectively.

The primary disadvantage of the classical definitions rests in
the limited amount of information available frém the specification of
error constants, since only one constant is significant. The general-
ized error coefficients represent an attempt to circumvent this diffi-
culty by defining all error constants in terms of the low frequency
behavior'of v(s)/r(s). With the Maclaurin series expansion of t(s) as
shown in Egq. (3.1), the error constants are defined in terms of succes—

give coefficients in tha series
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Equation (3.1) could be written as follows:

k

y(s) = =B ule) - 5 s uls) -

2
s u(s) - ... (3.2}
1 + kp v -

I

If the inverse transform of series of Eq. {3.2) is taken term by term

and impulses at t=o are neglected, y(t) is given by

K
y(6) = 755 u(e) - %-; a'{t) - —g;—-—u"(t) . (3.3)
p i v a

where dashes indicate derivatives with respect to time.

When the transfer function t(s) is replaced by its Maclaurin
éeries in Eq. (3.1), the transient terms of y(t) are discarded. Thus,
Eq. (3.3) is a valid description of the output y(t) only after suffi-
cient time has elapsed to allow those terms in y{t) which are generated.
by poles of t(s) to decay to insignificant amplitudes. TFurthermore, the
validity of Eq. (3.3) evidently depends upon the rapidity of convergence
of the series of Egq. {3.1) [Save, 1953].

Thus, only if care is exercised in the use of generalized error
coefficienté can it be said that the generslized error coefficients |
degcribe the relation between output and the reference input.

Equation (3.1} can be written in.a more convenient manner.as

follows:

I S ‘
t('._.) = kl ‘:\.25 kBS e o (3.'!5)
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Clearly, -

5 _1 _1
b =77 5x k= k¢
P v a

and so on.
In the case of multivariable system the transform of the output

vector Y(s) is related to the transform of input vector U(s) as follows:
¥{(s) = T(s) U(s) ' (3.5)

where T(s) = [tij(s)] is an @xm transfer matrix with the (ij)th entry
being the transfer function tij(s).

Since every entry in the transfer matrix T(s) is a tramsfer func-
tion, a Maclaurin series expansion‘of tﬁe form of Eq. (2.4) could be

written for each (i,j)th entry as follows:

tij(s) = kijl - kijzs - k,..8 - . .. (3.6)

With the expansion of each term of T(s) as in Eq. (3.6), T(s) can be

written as follows
T(s) = Kl -K.s —K,8" - .. .-Kgs - . .. {(3.7)

where

is an mxm constant matrix. Thus, K, is called the rth component of

transfer matrix T(s).
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From Eq. (2.34), T(s) = Il{(s)P(s)“1 where R(s) and P(s) are
polynomial matrices defined in Eq.. (2.35) and (2.36), respectively;
Thus, R(s) and P(s) can also be written in the same form as that of

Eq. (3.7) as follows:

2
R(s) = Rl + st + RBS + .

- ' 2 '
P{(s) = P1 + st + P3s 4+ ... (3.8)

where Ri and Pi are ith component matrices of R(s) and P(s), respectively.

The main difference between Eq. (3.7) and (3.8) is that while

Eq. (3.7) is an infinite series, Eq. (3.8) is a finite series. Let:

r :
g—'I'_"‘[T'(S)}be denoted by T®

ds

r
i“‘{R(s)}be denoted by R" (3.9)
ds® :

-é—-r-{P(s)}be denoted by BT

ds
Then
N
r+1 r!
5=0
and
R . LR
r-1 r!
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In the next section a relation 1s obtained between the rth

derivative of R{s) and the derivatives of T(s) and P(s).

3.3 The Derivatives of the Feedback
Invariant Matrix R(s)

Consider Eq. (2.34) of the last chapter

Leod _ (2.34)

T(s) = R(s) P
Post multiply both sides of Eq. (2.34) by P(s) to obtain

R(s) = T(s)P(s) .. (3.10)

In view of Eq: (3.10) and the notation of Eq. {(3.9) the following result

is proved next

r r. ar=1 i |
R"= ) r, T P _ (3.11)
LB Cy ‘
i=o
for r>o
where
r!
r

S AYEET)
Ci | {(r-1)! i1

Proof: The result is proved by induction. Clearly, for the result is

true for r=o because for r=o, Eq. (3.11) becomes
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o o
g_; R(s) = E“E'T(S) 1
ds ds ~ds

E(s)

o}

or

R(s) = T(s) P(s)

which is true from Eq. (3.10}.
Let Eq. (3.11) be true for the rth.derivative, then expanding

Eq. (3.11) for rth derivative.

+r T° P +r T P (3.12)

Differentia;e the above Eq. {(3.12) with respect to s to obtain the

following:
R o, ol o Tl e TR 4, Tl %y
cC C C C
o o 1 1
+ c Tr—1+1Pi + rc Tr—iPl-f-l + . Tr-i P1+1
i 1 iti
+ 1, toimlie2 + 1, p2ptl 7, et
i+l -1 - r-1



Combining the terms with similar derivatives in T(s) and P(s), one

obtains
R oo ™% p v 4y 7Rl
C C C
o o 1
r—1i _i+1
+ .. (rci + T, ) T P
i+l
+ (t, +r.) ot pT 4+ ¢ 1°p™H
C C
r-1 T r
But,
_ T, _T¥l
rCo =1 = CO
_ ; r+l
rCr =1-= Cr+l
and
_ r! r!
rci + rciﬂ = ITe-nr1 T G+ (r=i-1)!
r! . .}
S D GepT L e
- {r+13!

(i+1) ! (r-i)!

r+l
= Cina

51

(3.13)
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. a

After substituting from the above identities in Eq. (3.13), the

following result is obtained:

r+l1 r+l + r+1C TrP1 ... r+lC Tr-iP1+1

R =g 1 i+l
+ r+1C T1 Pr + r+1C ToPr+1
r r+4l -
or
41 TR L +1-1i_4 :
R =} c, T P (3.14)
i=o

Comparing Eq. (3.11) 1ith Eq. (3.14), it is evident that Eg. (3.14} is
the same as Eq. (3.11) with r replaced by r+l.

Thus, the result of Eq. (3.11), namely
r_ ¢ r-i i '
R = ) r, T ~ P (3.11)

has been established by induction for any integer r > o,
In the next section the central result which links component

matrices of T(s) with component matrices of R{g) and P(s) is =stablished.

3.4 Relation Among Component Matrices

In this section a relation is obtained among the various component
matrices of T{s) in Eq. (3.7) and the component matrices of R(s) and P(s)
in Egq. (3.8). This relation is examined to produce a design procedure

and a theorem .concerning necessary and sufficient conditions for the
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After evaluating the rth derivative of Eqs. (3.7) and (3.8) at

s=o0 (steady state) and after using the notation of Eq. (3.9), one gets

Now, evaluate Eq. {3.11) at s=o and substitute from Eq. (3.15) to

obtain

s8=0 i

and evaluate for r > 1 to obtain the

C

r-1
+ Z r, 1
i=o i

for r = o

for r > 1

for r=o

forr > 1

for r = o

for r > 1

r=0 to obtain

1

following result.

1l

P for

570 s

]
o]

IR

(3.15)

(3.16)
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After substituting for the derivatives from Eq. (3.15), one

cbtainsg
-1 :
IR, = TP+ | gyt (-G-OP KR ) iU
T84 R 5 i (r-1)! -1 41
i.e.,
-1 _
1 = t - 1
r-Rr+1. r.K].Pl’."i'l izo L Kr+l-—iPi+1 for r > 1

Cancelling the common non zero coefficient r! from both sides of the
above equation and taking the summation term on the left, the result

is

r~1
" e igo Ket1-iFin1 forr 21
The above can be written as féllowsl
r-1
RiPra1 ™ Rpap 121 Kr+l—i Piag TK. By (3.17)

Break Eq. (3.17) in two parts, one for r=1 and the other for r > 2, and

write together with Eq. (3.16) as follows:
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for r=o KlPl = Rl

for r=1 K.P

|
2]
+
Y
Hd

r—1
forr>2 KPRt izl Kotiei Piw1
TR (3.18)

The set of Eqs. (3.18) could be written as one single equation

for all value of r > o as follows:

Kl Pr+l = Qr + Kr+l Pl . ‘(3.19)
where
Rl - KlPl for r =0
Qr = R2 forr =1
r-1 _
'p.
Brn T 151 Bet1mg Papy PP T 22

Evaluating Eq. (3.19) for r =0Q, 1, 2, 3 ... . in séquence, the following

sequence of egquations is obtained:

KEh=ER

=
o

1 P = Ry T RSP

1 Py Ry + KZPZ + K3Pl (3.20) 7

.o
o
fae
1)
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From the-sequence of Egs. (3.2), it-is evident that Pl, PZ’
P3 . « « can be calculated in sequence for any given K., KZ’ K

respectively, if K1 in nonsingular. Thus, nonsingularity of Kl is a

3

sufficient condition for unique solution to the componeﬁts of P(s). The
following theorem is presented here to prove the necessity of Kl being

nonsingular for any useful design.

Theorem 3.1: Kl’ Pl’ and R, all must be nonsingular for

1

any stable desipgn for which transfer matrix T(s) is

nonsingular,

Nete that the reverse is not true; i.e., the system could be unstable

and still have nonsingular K P, and R,. However, the theorem tells

1’71 1

that if any of K Pl, or R, is singular, then either the design is

1? 1

unstable or the transfer matrix obtained is singular,

Proof ¢f Theorem 3.1: From Eq. (2.36) P(s) can be calculated for any
given {F,G}. Also, from Eq. (3.8)

= P(s)

Py
‘ 830

Then

] 2 |2(s)]

s=0

Let

[P(s)] = (s + X)) (s + S N RS

Then
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P(e) | LTy ey
5=0

or

1A

1 A

]Pll = Ay . - A

Now, if the system design is a stable design, then none of the

eigenvalues 1is zero and, hence, ‘Pll # 0; i.e., P_ is nonsingular, Note

1

once again that the above does not imply that A's are all negative or

have real part negative. All it dmplies 1is that if P, is singular, then

i
one of the eigenvalues is zero, resulting in an unstable design.

Now, from Eq. (2.34)

1

]

T(=) R(s) P ~(s)

or

171 (s) R(s)

P(s)
since T{s) is assumed to be nonsingular.
From the above, one easily obtains

P(s) = T 1(s)

s=0

R{s)
s=a

s=o
Let

T, = T'l(s)

5~0

then from above, it follows that
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But the above equation and the fact that P, muest be nonsingular implies

1

Rl nmust also be nonsingular. However, evaluating Eq. (2.34) at s=o

gives

T(s) = R(s) r i)

5=0 5=0 5=0

i.e., K = Rlel.

The above is valid because Pl is nonsingular; i.e., Pl exists.

Now, since both matrices on the right are nonsingular, it implies K1

must also be nonsingular. Hence, the theorem is proved.

3.5 Summary

The information developed in this chapter is new and forms the
basis for the design of the multivariable systems as discussed in deéail
in the next chapter. The main result obtained in this chapter is the
identity of Eg. (3.19) from which a step-by-step designh procedure can
be developed. The sequential nature of design procedures te be developed
is indicated by Eq. (3.20), where it is seen that each component of P(s)
can be determined from the kﬁowledge of the cbrrespondiﬁg component of
T(s) and previous components of P(s).

in the last section a theorem {Theorem 3.1) is presented which
eétablished usefulness of Eq. (3.19). If existence of Kl inverse wera

not necessary for a stable design with the nomsingular transfer matrix,

then one would have put too much of a restriction on K, by saying that
4
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Kl must be nonsingular. Ideally, one would like to see all elements in

Kl to be unity because (ij)th element of Kl is nothing but the value of

Yy (S)/uj (s)
: 8=0

i.e., steady state response to a unit step input. But, by Theorem 3.1,
it is seen that if Kl is singular, then either at least one of the sys-—
tem pole lies at origin orAthe transfer matrix is singular (the output
responses are not independent) both of which are undesirable situations.

Thus, Theorem 3.1 gives significant information about what steady state

response can be achieved for multivariable systems.



CHAFTER 4
A DESIGN METHOD FOR MULTIVARIABLE SYSTEMS

4.1 Introduction and Organization of the Chapter

In this chépter the results of the previous chapter are utilized
to develop a design method and to indicate conétfaints on design
requirements. First, additional notatienris introduced in Sec. 4.2
to compactly represent columns, rows and elements of the compomnent
matricés. Next in Sec. a,ﬁ a- theorem concerning the design constraints
is proved. The proof of tﬁe‘theorem is comstructive. A step~by-step
design procedure is outlined in Sec. 4.4. The design prbcedure is
illustrated with the help of a simple example in Sec. 4.5, In the last
section the results of the chapter are summarizea and the advantages and
drawbacks of the design method are discussed. It 1is pointed out how
some of the unwanted features of this design method could be overcome.

This is done in the next chapter.

4,2 Notation and Identity
Unless -specifically menticned, thé following notation is used‘
tﬁroughout.
1. A polynomial matrix P(s} is represented in the following
equivalent manners.
2 | : r

+ ... + P g 4+ ...

P(s) = [p..(8)] =P, + P_s + ?35 . ci1

i5°% 1 2

60



so that pij(s) denotes (ij)th element of the matrix P(s)

and

is a component matrix of P(s) for r = 0, 1, 2 ...
A kx % submatrix of a component matrix Pf is denoted by speci-
fying all its elements inside a kx{ constant matrix followed

by a subscript r as shown below:

. | -
P13 Pigwn ot Pig+a
pi-'rlj

| Piske o Parogee ]

Also (pij)r denotes (ij)th element of Pr

The 1ith column of a component matrix Pr is denoted by the

following equivalent notations:

i i
P, = [p ]r

Thus, a group of columns of Pr can be denoted in the following

equivalent ways:

61



i in
rpr

‘e pi] = [pi Pi+1 ces pj]

tp
Clearly, the above is a matrix with j-i+l columns in it.
Accordingly, Pr can be denoted in terms of its celumns as

follows:

4. In an earlier section, a subscript_is used to denote the row
of a matrix. Here, however, subscripts are used for components
of polynomial matrices. Thus, to avoid confusion and to be
consistent with an earlier notatien, the component matrix or
the submatrix of a component matrix is first denoted by a
éingle capital letter. The rows are then denoted by the usual
notation, i.e., by a subscript. For éxample, to denote the
rows of a component matrix, pj’ let W = Pj. Then W &enotes
the ith row of the matrix Pj' Thus, the notation introduced
here is compatible with the earlier notation where a sub-
script 1 denotes ith row and a supérsgript i denctes ith cclumn

of a constant matrix.

Next, an identity is established which is useful in proving the
theorem of the next section. The identity essentially partitions the
the multiplication of twe matrices in such a way that the known part is

separated from the unknown part.



identity 4.1: Let VW = Z where V, W, and Z are constant
matrices of dimension mxp, pxq and mxq, respectively (m,
p, and q are integers). Let o

th, a,th ... apth denote the

1 2

p ordered columns of V and the same p ordered rows of W.
If § < m, then the product Z = VW can be broken into two

matrices as shown below.

+ [vuj+l i+2 R

Z= {val v .. vaj]-_wai- .vamjr-waj+l ]
Vo Va442
Vo w
L %] L %m
(4.1

That is to say,Z is the sum of two matrices, the first of which
is made from j ordered columns of V and corresponding j ordered rows Df
W. The second matrix is the.muitiplication of the remaining (p-3)
ordered columns of V and the corresponding (p-j) ordered rows of W.

The above in effect is a way of partitioning the multiplicétion of two
matrices into two parts.

Proof of the Identity: Clearly

Z=VW = [vl v2 e vp]_-w R

(4.2)
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where, as stated above, vi denotes ith column eof V and Wi

denotes ith row of W. The above Eq. (4.2) can be rewritten

as follows:

1 2 3 D -
v wl + v w2 + v w3 + ...V wp = Z

Thus, Z is the sum of p matrices each of dimension (mxq) as

shown above. By reordering,the above can be written in the following

equivalent manner.

Z= z viw, = vml w o+ VGE woo+ ... voP (4;3)
i .Gl . 0:2 R C‘p

Frem Eq. (4.3), by combining the p reordered columns of v and the p

ordered rows of W, one gets:

Z = [val viZ L. vap]r W,

2

QS ..'.QS

m

(4.4)
From Eq. (4.4) it is clear that if the p columns of V are reordered
and the p rows of W are reordered accordingly, then the result of the
multiplicatioen is unchanged,

Now, pértition Eq. (4.3) as follows:
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(4.5)

In the above equation combine the first j matrices in one batch and
the remaining (p-j) matrices in the second batch to obtain the required
identity of Eq. (4.1). The identity is thus established., This identity

is used in the proof of Theorem 4.1.

4.3 Design Method 1

The design described in this section is based mainly upon the
result derived in,the last chapter{_especially as expressed in Eq.
(3.19). lIt is seen from the form of Eq. (3.20) that Pl’PZ’PB «e. Can
all be determined in sequence from the specification of Kl’KZ’K3 ey
reépectively. It is also seen that the generalized error coefficients
describe relations between the output and the reference input, However,
it is unfortunate that in the general case the Pi‘s must satisfy
additional comnstraints, and thus the Ki‘s are correspondingly restricted.
The constraints on P(s) are briefly described in Section 2.4 and 2.5.

To begin the development, Eq. (2.36) 1s now examined in view of

necessary and sufficient conditions for ewact model matching as given

in Section 2.5. Recall that in Section 2.5, P(s) is given as
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P(s) = (BC)"T{s% - (& +BF) s(s))

(Gey™t

]

s9 - @Gyt @G+ BEH s(s) (2.36)

Irrespective of what B and G are, if (']\3"{’3)-_1 exists, then any
polynomial in the ith column of P{sg) has a maximum degree of e This
is true because any polynomial in the ith colﬁmn of (ﬁC)—l(A + BF) s(s)
has a maximum degree of Ui—l, and any pol?nomial in tﬁe ith column of
(ﬁb)-l SU has a maximum degree of 0, However, (ﬁb)“l must exist for
realizébility, since Fhe céndition that P(s) be column proper for model
matching comes from the existence of (ﬁb}_l.

Thus, for realizability the degree of the highest order poly-
nomial in each column of E(s) must remain unchanged as this has been
shown to be one of the necessary and sufficient éondition for model
matching in Sec. 2.5. Also P(s) must bé column proper for a nonsingular
transfer function (Sec. 2.53). By definition P{s)} is column proper if
the matrix.consisting of the coefficients cf the highest dégree term in
éach column is nonsingular, i.e., (’I‘?:G)—:L is nonsingular. But it has
just been shown that the highest degree cof any polynomial in the ith

column of P(s) is Oy Also from Eq. (3.8), P(s) is given as follows

- 2
P(s) = P, + Pys + Pys” + ...

i

Thus, from the above representation of P{s), it is eclear that the column

Os :
vector consisting of coefficient of S * in the ith column of P(s) is
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nothing but the ith column of the component matrix P0 +1 which is
’ i
représented by p;_+l. Therefore, P(s) is column proper if the MXH
i

matrix

-1 1 2 m
(BG) ~ = [p P see P }
Ul+l O'2+l O’m+l (4.6)

is nonsingular.
Since column properness of P{s) is one of the necessary and
sufficient counditions for model matching (See Sec, 2.5), in summary

the constraints on the form of P(38) can be stated as follows:

1) p;_+l must be an independent vector fof ail 1 <4i<m
i _ .

i

, = 0 for j » 2  and for all 1 < 1i <m

(27
{4.7)

The above two constraints in turn limit the realizable set of
Ki's and require certain sufficiency conditions to be satisfied. These
conditions are taken into account by Theorem (4.1). The follewing
definition is introduced to aid in a precise stateﬁent of that theorem.

Definition 4.1 Component definite polynomiallmatrix: Let

(1) the polynomial wmatrix P(s) be represented by Eq. (3.8), i.e.,

9
P(s) = Pl + st + PBS + ... (3.8)

{(2) s be the number of zero columns in Pi

[



(3) Fi be a Yy XYy constant matrix formed by the elements

of P1 at the cross section of the Y ordered rows and

the same Yg ordered columns, which correspond to Y; zero

columns of Pi.

Then P(s) is called "component definite" if Pl

for all i > 1.

Notice that to test for component definiteness of P(s), one need not
form Fi for 1 = 1 and 2. This is true because each of the ¢'s is

greater than or equal to one; therefore, P, and P, do not have any

1 2

zero column. Also, since P(s) consists of finite degree polynomials

only, there exists a finite integer B < n, the order of multivariable

B 0 and thus FB = Pl'

P{s) is component definite only if P, is nonsingular. The nonsingu-

system under discussion, such that P Hence,

larity of P. is established in Theorem 3.1 and, hence, does not cause

1
any new constraint.

Theorem 4.1 is concerned with the freedom of choice of the
transfer function elements of the overall transfer matrix T(s). This
freedom of choice is expressed in terms of the freedom of choice for
the error coefficients.

Theorem 4.1 The first Gi+1 error coefficients of each

transfer function element Fji(s) in ith colﬁmn of T(s)

can be realized arbitrarily by state variable feedback

Valone if 1) the first error coefficients ki are chosen

1

such that P(s) is forced to be component definite; 2) the

are nonsingular

63
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. - i
last error coefficients k are chosen such that result-

g i+1

ing p$_+l are mutually independent vectors for all f < m.
i

The above theorem gives only.sufficient conditions for the freedom
.of choice of the error coefficients of each transfer function. The
application of the theorem for design of multivariable systems puts
constraints on only first and last generalized érror caefficient for
each transfer function. The first of the‘two conditions imposed by
the thecrem is that Kl be chosen such that the resulting P(s) is com—
ponentrdefinite. The test.for component definiteness of P{s) does not
require lengthy computation because the form of P(s) is completely
known in advénce from the krnowledge of the Ui'é, and the matrix-Pl is
completely determined froy the knowledge of the matrices Kl and Rl.
Thus, one can easily form the Y; ¥y matrices Fi {(Def. 4.1} and test
them for nonsingularity. If some Fi happens to be singular for the
partigular choice of the mat%ix Kl, the Kl must be changed accordingly.
The secondlcondition of the theorem restricts the last speéifiable
érror coefficient to produce a P(s) which is column proper and thus
realizable.

The proéf is accomplished by first assuming that the conditions
of the theorem are satisfied, and then showing that all the components

of P{g) are uniquely determined and that “hey form a P(s) which is

realizable by the state variable feedback of Eq. (2.2).
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4.3.1 Proof of Theorem 4.1

Examine the first equation of the series of Eq. (3.20},
namely
1" 1
From Theorem (3.1) it is seen that K, and P, must be nonsingular for any

1 1

stable system whose transfer matrix is nonsingular. Thus, knowing Rl

from the knowledge of R(s) and Kl as specified, P, is readily given as

1

It is assumed that the Pl as obtained above is such as to force P(s) to

be component definite. If not, one must change K, to force P{s) to be

1
component definite.
' Now, examine Eq. (3.19) as given below
P Qv Y (3.19)

where, as denoted also in Eq. (3.19)

Qr = Rr+l for r =1

7 r~1

Qr N Rr+l + igl Kr+l—i Pi+l forr 2 2

For convenience, let j = r + 1, then Eq. (3.1%9) can be written as
follows:

K Py=Q +KP (4.8)

1 j 1
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Thus in Eq. (4.8), Qr ie completely known at the time Pj is being evalu—
ated, provided Pj is evaluated in strict sequence for j =2, 3, 4, ... .
This saquential evaluation of the matrices Pi is a significant computa-
tional advantage.

Now, examine the form of P(s). Since the degree of the highest
degree term in the ith column of P(s) is G the ith column of Pj is
identically zero for j > qi + 1. Thus, in general, Pj might have some

3

only to show that the remaininglm—Yj columns of the matrix Kj are still

columns identically zero. Let P, have Yj zero columns, then one need

arbitrarily specifiable, because the theorem promises only o, +1 arbi—
trary error coefficients for each element in the ith column of the
transfer matrix T(s).

To prove the above, it suffices to show that 1if & = Yy columns
Uf,Pi are arbitrarily specified, then in Eq. (4.8), the corresponding £
columns of Kj are uﬁiquely determined from the knowle&ge of remaining
n-2 columns of Kj. Pj can then be determined completely from the same
Eq. (4.8)., (Notice that if R columns of Pj can be specified arbitrarily,
they could be specified as zero.) The above is proved next.

Let a.th, o

1

and let Glth, v

2;h, . uﬂth columns of Pj be specified arbitrarily

2th, ce em_ith colunns cf,Pj be the remaining unspecified
columns to be determined. Then by considering the 2 specified columns,

namely o.th, azth, fes azth of Eq.-(4.8), the following relationship is

1

ocbtained

‘ R Lo
K,[p 1lp 2 pTt], = 1q"1q%2 .., qqg‘lr + Kj[palpaz PGEJl

1P 3 .
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The above could be written as follows:

where

o o a
W=[plpz---p2]l

is a (mxl) matrix and

Z = Kl,[pm1 pm2 ....pui]. - [qul c;m2 . qag]

j T

igs a (mx2) matrix.

Since p?i are specified and Qr and Kl are completely known in

advance, Z is completely known. By expanding the left side of the

relation KiW = Z, it could be written as follows:

s

1.2 om0
[k k% ... k ]j vy =7
W
w
\-m_

where W, is (1x2) row vector.
Applying the identity of Eg. (4.5), the left side of the above
équation could he seParéted inte two parts, one containing the 2 un-

known cclumns of Kj and the other containing m=L arbitrarily specified

columns of Kj’ as follows:
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: - 07 .6 6 .
[#ﬂfZ.ulfhj(mu + L2 L ety [ =z
Wuz Wez
W w
| Cag | L w2 (4.10)

Now, examine the following 1x2 matrix

Wul

Waz

. e w

£

| Yoy .

Notice that the matrix W itself consists of £ columns of.P1 corresponding

to zero columns of Pj’ and Vot is the oy the row of W, Thus, by the

definition of component definiteness of P(s), the matrix under con-
sideration is nothing but the matrix Fj formed while testing P(s) for a

component definiteness. Therefore, -Eq. (4.10) can be written as follows:

-

2% ... k™). 1, =z - °1 %2 . feeny B
iod
"JB 2
“em—z

- = (4.11)



Since Fj is an tx2 (here L = Yj) nonsingular matrix for all j,
the ¢ unspecified columns of kj on the left side of Eq. (4.11) can be
determined by multiplying on both sides of Egq. (4.11) by (Pj)ul

The matrix Kj is thus completely known, and hence Pj can be
completely calculated using Eq. (4.8), since everything except Pj is

known in that equation and ¥, is a nonsingular matrix. The matrix Pj

1
so obtained is guaranteed.to have 2 columns as specified (identically
zero in this particular case).

Proceeding sequentially for j = 2,3, all the components of
P(s) can be calculated easily. The P(s) thus obtained is guaranteed to
have required form (the degree of the highest degree term in the ith

column of P(s) is U,). The only remaining requirement for P{s) tc be

realizable is that it be column proper, i.e., p +l be an independent

vector for i = 1,2 ..., nm. However, for some partlcular choice of
i ,
kCr +l’ pU +1 may not come out to be an independent vector. In that

case, one must change k to be an independent vector.

a,+1
Oy

To see that p +l can be made 1ndependent by the proper

choice of k , 1f sufflces to prove that k

+l can be found for any

o +1
1 .

arbitrary choice of p; ey But this follows from the fact that P(s)
i .
is component definite. Thus, if while solving for Py 41 the columns

i .
P 41 come out to be dependent, then choose them as desired and solve
i

1]

Eq. (4.8) as before, except that this time £ Thus, proceeding

Yi41°

as before, Egq. (4.8} can now be solved for & = unknown columns of

Yia1

Kj instead of Yj celumns of Kj' The solution is once again guaranteed

74
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because T, is also nonsingular by the definition of component definite-

i+l

ness of P(s). The theorem iz thus proved.
Notice that the constraint that P(s) be component definite

is easy to handle because this simply requires that P

properties. However, Pl = kIl Rl'and is calculated at the very

beginning of design. Hence, it is easy to alter. Also, the constraint

1 satisfy certain

that k-
9i
vector follows from the column properness of P(s). Thus, this con-

i
e chos fo i 0 an independent
+1 be chosen sc as to rce each p0i+l to be an 1 P
straint amounts to choosing the last error coefficient for each transfer

function in such a way that the matrix of Eq. (4.6) as given below

-1 -2 m
poi+1 Poj+1 " 13'crm+l

is a nonsingular matrix. This requires relatively small changes in the
error coefficients k
oi+l.

" In the next section the steps involved in applying the design

method of this chapter are summarized.

4.4 Step-by-Step Design Procedure

The following step-by-step design procedure simplifies the
presentation of.the computational techniques involved in designing the
multivariable systeﬁ by using the design method of the chapter.

Step 1l: find the transformacion matrix Q as follows:
(g) Find the first n Independent columns of the

controllability matrix.
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(b} Rearrange these n independgnt columns to form the
lexographic matrix and find o's from there.
{(c} Take the inverse of this lexographic matrix and form
the transformation matrix Q as explained in Sec. 2.3.
Apply the transformation to find the new state variable
representation of the system; that is, find K, ﬁ; and C.
Use the results of Step 1 and Step 2 to form the matrices
SG, S(s);’z and B.

Calculate the matrix R(s) and the most general form of the

matrix P(s).

decoupled system is desired, follow Steps (5d) through (9d); other-

follow Steps (5) fhrough {12).

5d;

6d:

Bd:

9d:‘

Test if the system is decouplable and find the pole zero
excess of each subsystem during this test.

Find the fixed zeros for each subsystem from the knowledge
of the matrix R{s).

Determine the position of uncontrollable poles, if any, by
examining R(s).

Chocose the model transfer matrix for the system which has
the fixed zeros as found in Step -(6d) and pole zero excess
as found in Step (5d).

Find the pair {F,G} to realize the above decouplied transfer

matrix.
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For the general case of model matching, follow the steps listed below:
Step 5: Expand each tij(s} of the model transfer matrix in Maclaurin
series up to Ui+1 terms. The specifiable portion of ki's is
then completely known.
Step 6: Write R(s) in its component form. Since R{s) is completely

known from Step (4) all components of R(s) are known.

Step 7: Calculate P1 from the knowledge of Rl.and Kl'

Step 8: Test P(s) for component definiteness. To dq this, form the
Fi's from the knowledge of the form of P(s) and P, - If all
of them azre nonsingular, proceed to Step {9). Otherwise
change kl accerdingly and go back to Step (7).

Step 9: Calculate Ez, P3, e A sequence until all the components of
P(s) are known. At the end of eaéh sequence, check if the
'p§i+l are independent vectors. If not, change the k§i+1
acceordingly and repeat the last sequence.

Step 10: Find the transfer matrix T(s) = R(s) Ppl(s).

l A
Step 11: Find the pair {F,G} to realize the P(s) obtained above.
Step 12: Using the transformation matrix Q, find the pair {F,G}

which realizes the transfer matrix of Step (10),

The step-by~-step design procedure is illustrated with 2 simple example

in the next section.

4.5 Example 4.1

The example here has been intentionally chosen to be simple in

order to meaningfully and concisely illustrate all the steps invelved in



78
the design of mﬁltivariable systems using generalized error coefficients.
The example is a slightly changed version of Example 3.1 given in
Silvinsky's dissertation [1969]. The problem of decoupling is illus-
trated first and the problem of complete model matching is tackled mext,.

Consider the multivariable.system whose block diagram is given

in Fig. 4.1 and which is described by the following state equations.

-5 0 0 1 0
X = 0 -1 olx+|2 oluv
4] 4] -2 ] 0 1
1 0 0] :
Y = X (4.11)
) 1 1 ]

Obviously

n = order of system = 3

=]
K

number of ipputs = number of outputs = 2
3
X € E is a column vector

2
Y and U € E are column vectors

By inspection, both the input matrix B and output matrix C of Eq. (2.1)
have full rank, m=2. Also, system is completely controllable and com-
pletely observable,

Step 1: The controllability matrix of Eq. (2.7) is obtained as follows:



¥

s+1

Fig. 4.1 Block Diagram

of the System

79
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[B AB AzB] =1 2 o -2 0 2 0

0 1 g =2 0 4 (4.12)

Cleafly, the first n Independent columns of the controllability matrix
are the first three columns of the matrix of Eq. (4.12).
After rearranging these first three independent columns accord-

ing to Eq. (2.8), one obtains
(bl apl b2] = [pt a1yt a%271,2, (4.13)

Accordingly, o, = 2 and o, = 1.  Notice that for this particular example,

1 2
the o's are unique because the vectors bz, Abz, and A2b2 are dependent

except that g, = 2 as

vectors. Hence, Oy = 1, leaving no choice for o 1

1

stated above.

The inverse of the matrix in Eq. (4.13) is

1 -5 01" [-0.25 o0.625 0 ]
2 -2 0 = |-0.25 0125 0 |
c 0 1 ] 0 0 1.0 J C(4.14)

From Eq. (2.9), dl =0y = 2, d2 =g, + g, = 3 and, hence, £, and £, are

1 Z

defined as the second and third row, respectively, of the matrix in

Eq. (4.14).
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Hence, from Eq. (2.10), the transformation matrix is given by

) -0.25  0.125 0

1
Q= | LAl =] 1.25 -0.125 0
%9 0 0 1.0] (4.15)

F.
Step 2: Using the tranformation X = QX, the transformed system of Eq.
(2.11) is found, where the transformed matrices are defined by Eq.

(2.12). Thus, the transformed system is given by

0 1 {0 0 10

;'. . | A !
X= |z 26 O x+l 0 v

. 0 0 -2 ] o 1 (4.16)

1 1 ) 0]

| »

P e ——| X

100 2 4 1] %.17)

As can be checked by inspection, the transformed system matrices
in Eq. (4.16) do have the special form described in Eq. (2.15), (2.16),
and (2.17).
Step 3: Ihe ﬁatrices Sc, S(s), A and ﬁ, are found using Equations (2.18)

through (2.21), respectively, as given below:



S(s) =

o
[}

=1
13
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1 0
s 0
0 1 (4.19)
-6 0
0 -2 (4.20)
0
1 (4.21):

Step 4: From Eq. (2.35) R(s) = ¢ S(s). Thus, substituting for C and

S(s) from Equations (4.17) and (4.19), respectively

Now, from Eg. (2.36)

P(s) = (Be) % (g°
Let

)™t = p

0 _ [ s+l 0 ]

0 [ 2¢s45) 1

1 - (4.22)
- (X +EF) s(s)}

(4.23)

(4.24)
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and

] 1 M2 a3
(86) (A + BF) = -H = -

21 22 23 (4.25)

‘From Equations (4.23), (4.24), and (4.25), one obtains

dlls + h125 + hll _ dlZS + h13
P(s) =
2 l
dyyS" F hpps T hyy dpp8 * By3 | (4.26)
Thus, the transfer matrix of the multivariable system in its most
general form as given by Eq. (2.34) is as follows:
2 1
s+l 0 dlls + hlZS + hll dlzs + h13
T(s) =
5 :
2(s+3) 1 les + h225 + h21 dZZS + h23 (4.27)

4.5.1 The Froblem of Decoupling

In Section 2.6, it was shown that.if only thé decoupled transfer
métrix model is desired, then.,all the relevant information is obtained
from the knowledge of R{s), the system feedback invariant matrix, and
the necessary and sufficient condition for decoupling of the system

(Falb and Wolowich, 1967; Gilbert, 1969].
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Step 5d: If the above mentioned test for decoupling is applied to the
systém in Eq. (4.11) or the transformed system in Eq. (4.16) and (4.17),
the following information is obtained:
a) The system is decouplable,
b) The pole zero excess for both subsystems is 1,
Step 6d: Now if each row of the matrix R(s) as obtained in Eq. (4.22)

is written as in Eq., (2.54), the following is obtained:

[

Rl(s) [s+1 0] = (s+1)[1 0]

Rz(s)' [2(s+5) 1] = 1[2(s+5) 1] (4.28)

Thus (s+l) and 1 are the highest degree polynomialé common to all entries
of the first and secon& rows of R(s) respectiﬁely.‘ Since the zeros of
the highest degree common polynomial of ith row of R(s) are the zeros
of ith subsystem the following information is obtained:
a) The zeros of the first subsystem are the zeros of s+l.
b) .The'sec0nd subsystem has no zeros.
Once again, since the order of ith subsystem is tﬁé sur of the number of
zeros and pole zero exceés, the follewing conclusion can be drawn easily.
a) The order of the first subsystem is 141 = 2,
b) The order of the second subsystem is 0+l =.l.
Step 7d: " Since the sum of the orders of the two subsystems = 241 = 3
is equalito the order of the overall system of Eq. (4.11), there are no

uncentroliable poles. This fact could also be verified by checking the
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matrix R'(s) of Eq. (2.62). The uncontrollable poles are the zeros of

|R*(s)|. For this example -

IR"(s)| = : =1

2(a+5) 1

Since the polynomial |[R'(s)| has no zeros, there are no uncontrollable
poles as stated before.
Step 8d: In summary, if decoupling is desired then choose the model
transfer matrix such that the first subsysteﬁ has a zero at s = -1 and
two arbitrary poles and the second subsystem has no zero but omne arbi-
trary pole.
Step 9d: Hence, given a transfer qgtrix model which meets the above
specifications, the pair {f,G}, to realize the model response from the
plant, could easily be found by using any one of the following methods:
1. Original algorithm of Gilbert [1969} for decoupling
2. Wolowich's [1972] algorithm for exact model matching

3. Design method desicribed in this study.

All of the above algorithms give the same F and G, Method 2 is compu-
tationally more difficult because, as mentioned in Sec. 2.3, it requires

that the model transfer matrix T(s) be put into the form
T (s) = R (s) P 1(s)
m Tl m ’

where Rm(s) and Pm(s) are relatively right prime polynomial matrices as

given in Eq. (2.38).
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The algorithm for finding the feedback and gain matrices F and
G is illustrated for the general case of model matching which is con-

sidered next.

4.5.2 The General Case of Model Matching

The general case of model matching is illustrated by trying to
approximately match the plant transfer matrix to a given model transfer
matrix using state variable feedback. Assume that the following model

meets the design requirements for the given plant of Eq. (4.11).

6(s+1) 0.6(s+1)
{s5+2) (s+3) {s+2) (s+3)
T(s) =
_ 10 _4 ‘
{s+2) (5+3) (st4) (4.29)

If one were to test for exgct model matching, it would be found that the
necésgsary and sufficient conditions for exact model matching as given in
Theorem 2.2 [Welowich, 1972] are not satisfied, and, hence, the plant of
Eq. (4.11) cannot be matched.to the above model. Also, application of
the test dées not give any hint as to what changes should be made iﬁ the
nodel to force realizability. Thus, the designer is left te his luck
and experience to try one model after another until he finds one that can
" be matched and éhat meets his requirements.

The design method described in the previous settion is now
applied to iavestigate if there Is any otler model which matchoc the

plant of HEq. (4.11) and at the same time, approximates the model of

Eq, (4.29).
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Step 7: Substituting for K1 and Rl From Eq. {4#.30) and (4.31}, one
obtains by using Eq. (3.20)
_ -1

Pp=k% Ry
Hence,

(1.0 0.1 7171 -0

Pl =

| 1.0 1.0 10 1

0 —.111]

[10.0 1,111 _ (4.32)

Step 8: To check for the component definiteness of the polynomial

c

matrix P(s) . expand P(s) as obtained in Eq. (4.26) in its components

as described in Eq. (3.8). Clearly,

2
s

= P
P(s) P, + st + PB

Since the oi's are greater than or equal to 1, Pl and P2 do not have

any zero columns, and hence, one need not form Tl and Fz. Since the

last non—zero component of P(s) is P3, one needs to fo;m and check F3

only. From Eq. {4.26)

[§22 0 ' (4.33)



and, hence, only the second columnn of P

definition 4.1, F3

cross section of the second row and the second column of P

and, hence, T3

matrix,

Step 9: Now find P

or

After subst

1.0

1.0

Hence, from above

1.0

1.0

b

(0.4

@.0
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is zero. Thus, according to

3

is a 1x1 submatrix formed by thé elements at the

1° Thus,

is nonsingular and thus P{s) is component definite

, using Eq. (3.20)

K;P, =R, + K, By (3.20)

ituting for K P., K, and R2, the result is

1;

)
0.1 [ ¢ [Lo.lﬁ? -.01671[ 0. -.111
+
1.0 [; 0 [_0.70 0.250 [|10.0 1,111
0.1 [0.833 ° o

1.0 2.50 0.2

26  -.022 ‘ _ :
7 0.222 (4.34)
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Now, from Eq. (4.6}, P(s) is colummn proper if

Pl 92
[ 01+1 02+1}

contains all independent vectors, i.e., the columns of the following

matrix

[?; pg} o | (4.35)

must.be Independent vectors. Since pg is known, one must check that it
be a non-zero vector. From Eq. (4.34) it is seen to be a ﬁonuzero

vector; hence, proceed to find P3.
Solving Eq. (4.8) for r=2, one.obtains

+ K, P

3 7 Qy T Ky (4.36)

KllP

and

Q =Ry +K P

Since R3, K2 and P2 are all known at this point, Q2 is obtained by direct

substitution as fcllows:

-.1667 ~.0167110.426 -.022
Q, = [0] + - -
- 0.70 0.250}| 4.07 0.222
i.e., .
-.139 o
Q =
2 1.32 0.04]
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Next, frem Eq. (4.30), since the second column of K3 is unspeci=-
fiable, this must be determined by considering the second column of both

sides of Eq. (4.36).

.2 2 2
K1P3 = 9 * K3y

But, from Eq. (4.31), pg = 0 and hence

2 2
or
[1 211 (Pyy)y 2
3 i = - q2
(p,,)
Poa/q :

The above can be partitioned into known and unknown parts as shown in

Eq. (4.10).
1 2 2
g (pp) ot kg (pyy)y = - 4
Hetice
2 L2 1
v K(Rgp)y =y - By )y
and thus

ld _l
2 2, .1
5= '{qz T Ky (p12)1} [(pzz?l}



Substituting for all quantities on the right hand side of the above ex-

pression, one obtains

(W&

1

]

[-0.111]

0 0.306
..I_
0.4 -.390
~.0340 1
(1.11)
0.0833
0.0306
~.0750

The remaining first column of P

{the only unknown part) is now

r1.11117%
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calculated easily from Eq. (4,36) by either solving for the first column

of P
unnecessary move computation. So consider the first column of beoth

sides of Eq. (4.36).

Sz

1_
SRE

1
q2 + K
0,13

1.32

—0.13

| 1.32

1
3 P1

g]
9]

]

(0,306

-.39

rO.BOé}
-.750

0.0306
-.0750

0.167]
0.567]

10

or by scolving for the complete P3, even though the latter involves
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Hence

y o [0e
Py = K
0.667
- -1
1.0 0.1 0.167
1.0 1.0 0.567]
0,123
0,444

Now, from Eq. (4.35), p% must be independent of p%. Since pg is
the second column of PZ in Eq., (4,34), by inspection P; and p% are
mutually independent columm vectors,

Exéept for the determination- of the neceasary F and G, the de-~
sigﬁ is thus complete, since P(s) is completely known and is guaranteed
to satisfy the generalized error coefficients K

KZ’ and K, as speci~

1’ 3

fied in Eq. (4.30). HNext, check the designed transfer matrix so
obtained.

Step 10: The polynomial matrix P(s) is completely specified as follows:

B 2
P(s) = Pl + st + PBS
12382 + L4268 ~(.02228 + .111)
Ahbs® + 4,078 + 10 - .222s + 1.111 (4.37)
Hence
-1 _
21 (s) = P(s)/A



where
. .222(s+5) .0222(s+5)
P (s) = adj P(s) = 2 2
-{.4445" + 4.07s + 10 ,123s" + .426s
(4.38)
A= 1P(s)] = (L1238% + .4268)(.222) (s+5) + (.&44s® + 4.07s + 10)(.022) (s+5)

022 (s+5) {1.23s + 4.265 + .444s + 4.07s + 10}

022 (s+5) {1.674 s> + 8.33s + 10}

0371 (s+5) {s® 4 55 + 6}

]

L0371 (s+5) (s42) (5+3)
From Eq. (2.34)

R(s) P 1(s)

T(s)

R(s) P*(s)/A

Substituting for R(s) and P*(s) from Equations (4.22) and (4.38),

respectively

. [(s+1) 0 J ~.222(s+5) ' .0222(s5+5)
R(s)P"(s) '
s

2(s+5) 1 |l~(.444s + 4.07s + 10) 12382 + .426

7,222 (s+1) (s+5) 0222 (s+1) (s+5) 1

, |
Lash(s+5)? - ashs? - 4.07s - 10 L0644 (s45) %+, 1238%4 . 4266 |
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.222 (s+1){s+5) L0222 {s+1) (s+5)

!.37s + 1.111 16722 + .870s + 1.111

Therefore

T(s) = R(s) P*{s)/A

222 (s+1) (5+5) L0222 (s+1) (s45)
L0371 (s+5){(s+2) {s+3) L0371 (s+5) (8+2)(s1+3)

) .37 (s+3) 167 (e+2.22)(s42.98)
L0371 (s+5) (s4+2) (s+3) L0371 (s+5)(s+2) (s+3)
Co6(stl) 0.6 (s+1)
{s+2) (s+3) (s+2) (s+3)

) 10 : 4.5(s + 2.22)
7(s+2)(s+5) {s+5) (s+2) . (4£.39)

‘Some comments are in order before the pair {F,G} are found to
realize the transfer matrix of Eq. (4.39). The transfer matrix actually’
desired is given in Eq. (4.29). A comparison between the transfer
matrices of Equations (4.29) aad (4.39) shows that‘except for the trans-
fgr function entry tzz(s) all other entries are exactly realized. Also,
for thé transfer function tzz(s), the difference between desired and
obtained is not intolerable, as can be seen by comparing the time re-
sponse of the two as shown in Fig. (4.2).

ﬁowever, one may not always be as lucky as in this example. As
ﬁentioned in the beginning, this is a relatively simple example to
~demenstrate the design method of multivariable systems. It is quite

possible ‘and probable that the response obtained would not be as close
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to the deéired response as indicated in Fig. 4.2 for this case. For
this example one could guess to some extent which of the transfer func-
tion entry would differ most in its response. Since the second column
of K3 is nof specifiable, one would.guess some change in the second
column of T(s). Also, since tiz(s) is just a constant multiplication

bf tll(s), one would not expect much change in t__.(s). Thus, the only

12
entry left is t22(s) which might have much different transient response
than desired. As can be seen by examining'CZI(s) and t22(s) in Eq.
(4.39), they both have closed loop poles at the same positiqn. (Thus,
it seems (k21)3 has more effect on t22(s) than.any other single error
coefficients.) The above comments are included to give the reader sone
‘insight to the problem soclution. However, extreme caution should be
taken before any of the above concepts are generalizéd.

Once again, it should be noted that even if the desired transfer
function and the one obtained might differ significantly in their tran-
sient behavior, they still asymptotically coincide in their steady state
behavior if the system design is stable.

Step 11: To find the pair {%,G} which realizes the transfer matrix as
obtained in Eg. (4.39), find the pair {F,G} to realize P{s) as obtained
in Eq. (4.37). | |

Comparing Eq. (4.26) and (4.37), the D matrix of Eq. (4.24) is

given as follows:
d d, [.123 -.0222

ngl d22 | ‘[f444 222
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Hence, from Eq. (4.24)

{ilza -.02217% 6.0 .60
pt -

1

(BG) '
AXA .222 ~12.0 3.3 (4.40)

Hence, G = §-1D-1 Dml, because from Eq. (4.21) B = Identity matrix.

6.0 .60 ‘
G = -
~12.0 3.3 (4.41)

Once again comparing Equations (4.26) and (4.37), the H matrix of

"

Thus

Eq. (4.25) is given by

h h h ( 0  .426 -.11

H = =

h [s B h ) [}O 4.07 l.llJ (4.42)

But, from Egq. (4.25)

@)V F+ 3 = -n

Hence

%+ EBF = —(Bo)H

This implies

g
4

37 ((Eo)E + X

g -8 1%

il



After substituting for G, H, B and & from Equations (4.41), (4.42),

(4.21) and (4.20), respectively, one gets

99

R 6.0 .6 [0 .426 -.11]
F=- :
-12.0  3.3]{10 4.07 1.11
1 o -5 -6 0
0o 1 0o 0 -1
6.0 5.0 0 -5 -6 O
33.0 8.37 5 o o0 -2|
-1.0 1.0 0
-33.0 -8.37 -3.0 (4.43)

Step 12: Using Eq. (2.14)

F = fQ (2.14)

After substituting for F and Q from Equations (4.43) and (4.15)

respectively, one obtains
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-1.0 1.0 o |{-.25 .125
F = : 11.25 -.125
-33.0 -8.37 =30
0 0 1
1.50 ~.25 0
~2.2 =3.08 -3.0 . (4 .44)

Thus, Equations (4.44) and (4.41) give the required feedback pair {F,G}
which realizes the transfer matrix of Eq. (4.39).

This satisfactorily completes the design. The state variable
feedback compensated plant is shown in Fig. (4.3). In the next section
the results of this chapter are summarized, and advantages and disadvan~

tages are pointed out.

4.6 Conclusion

A completely new design method for the design of multivariable
systems is presented. The main advantage of the above design method is
that it realizes a given (pre-specified) model transfer matrix approxi-
mate, where necessary and sufficient conditions for exact model matching
fail to produce any solution. The design method is based upon approxi-
mating each element of the transfer matrix by a finite element series.
The coefficients of the elements in_the series are'well known to have
Jdivaet relationship with the gencralized error coefficients. As comparnd
to exact model matching, this design method tries to realize generalized
error coéfficients of the model. It is shown that certain sufficiency

conditions (Theorem 4.1) must be met which in turn restrict the allowable
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range of error coefficients. This in itself is not a sefious design
restriction for all practical pufposés.

The main disadvantage of the design method is that the design
does not take into account the transient behavior of the system. This
problem could theoretically be serious enough to cause instability.
This disadvantage is attributed to the fact that an n terms series
representation of an nth order‘transfer function- element does not
uniqugly determine the transfer function. That is to say, there are
many transfer functions, some of them having undesirable t:gnsient
behavior or, in the worst case, representing umstable systems, which
have the same n generalized error coefficients.

Thus, it is poésiblelthat the application of the above design
procedure may result in an undesirable transient response. Of course
this fact may be checked eésily by comparing the desired and actual
step function responses. In the next chapter a second design method is
given which ensures stability on the risk of deterioréting Ehe steady
state behavior of some of the elements in transfer matrix. . Thus, even
though an ovefail satisfactorf solution 1is not guaranteed in advance,
the design method of this chaptér gives valuable insight into the

solution to the problem of model matching.



CHAPTER 5
THE POLE FIXING METHOD

2.1 Introduction and Orpganization of the Chapter

The pole fixing méthod for the.design of multivariabie systems
is the subjectimatter of this chapfer. The.pole fixing metﬁod has a
distinct advaﬁtage over the error coefficient design method of the last
chapter. The shorﬁcomings of the efror coefficient method ére sunma-
rized and the salient features of tﬁe pole fixing methods are discussed
in the next section. The constraints of the pole fixing method are
describedl§ia Theorem 5.1 in Section 5.3. ‘The.proof of tﬁe theorem is
constructive and leads to a design procedure. The step-by-step design
procedufe is described in Section 5.4. 1In Section 5.5 tﬁe pole fixing
design procedure is illustrated by reworking the example of the last’
chapter. Some special cases of the pole fiiing method are discussed in
the next section. Finally, the findings of the chapter are summarized -

in Section 5.7.

5.2 Need for Pole Fixing

The error coefficient design metho& of the last.chapter is bésed
completely upon the generalized error coefficignt representation of a
transfer function. The generalized error coefficients describe_théNSys~
‘:tem input behavior only after sufficient time has elabsed for the‘syétem
ltransients to decay to insignificant amplitudes. Thus, even though the

'
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error coefficieht design method of the last chapter is simple, it doeé
not ensure satisfactory transient behavior of the systems. In the worst
case the design may even lead to an unstable systém..

The pele fixing method to be.ihtroduced in this chapter ensures
the system stability by prefixing all the system poles at specified
iocations in the left hand § plane. It is well known [Anderson and Luen- .
berger, 1967; Wonham, 1967; Davison, 1968: and Sridhar and Lindorff,

1972] that if the multivariable system of Eq. (2.1) is completely con~
tfollable, then all of the n poles of the system can be fixed arbitrar-
ily by using l.s.v.f. alone. The pole fixing method, in addition to
assigning all the poles of the system, fixes zeros and steady state errors
for some of the transfer functions in the transfer matrix. However, tpe
fixing of the zeros is done indirectly via error coefficients, and re-
quires that R,, the first component of the system invariant matrix R(s),
satisfy certain suffficiency conditions. Most of the time these condi-
tions can be met by simple changes in the names of inputs and outputs.

Compared to the decoupling technique, the pele fixing method has‘
three distinct advantages:

1. considerably more freedom for the off-diagonal terms
is achiewved,

2. contrellable systems which cannoﬁ be decoupled can be
designed for undecoupled response, and

3. there are no uncontrollable poles.

Compared to the error coefficient method of the last chapter, it has the

advantage that the transient behavior can be controlled as well. The
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only disadvantage is that no error coefficients can bé specified for one
side of the diagonal terms in the transfer function matrix which amounts
to not being able to control the zeros of that side of the transfer
function matrix, directly or indirectly. However, if the open loop
system has only one way coupling, i.e., R(s) is a triangular matrix, or
can be made a triangular matrix by changing the names of inputs énd out-
puts, then one side of the diagonal terms in the transfer matrix could
be made identically zero. This is discussed in Section 5.6 under the
speciél case of triangular decoupling.

Thus, despite the restrictions that the zeros for'oniy one side
of the diagonal terms in the trénsfer funcfion matrix can be specified,
the pole fixing design method is gsefpl_fo; two reasons. First, it gives
a-lead into how the transiept behavior specificationé can be accommodated
in the design criteria, and, secondly, information is obtained as to
whatris realizable from the system.

In the next section the constraints of the pole fixing method are
mentioned in Theorem 5.1. The proof of the theorem leads to a design

procedure.

5.3 The Pole Fixing Method

In this section the design constraints are introduced through
Theorem 5.1. The design procedure follows from the proof of the theorem.
First, a definition is introduced to help inderstand the implications of

the theorem that follows:
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Definition 5.1: Lower_(upper) Definite MaCri#:' An mxm
constant matrix P is called_Lower (upper) definite if the
vXY submatrix formed from the lower right most (upper

- left most) terms of P is nonsingular for all 1 <y j_m;

A matrix which is both lower definite and upper definite is simply

called definite nonsingular matrix. Conversely, if a matrix is

definite nonsingular, it is both lower definite énd.upper definite.
Notice that any triangular matrix (one side of diagonal terms iden-
tically zero) if nonsingular is a definite nonsingular matrix, a
requirement which is satisfied if, and only if, none’of the diagonai

terms are Zero.

Theorem 5.1: If the multivariable syétem is controllable,
"then all the n poles of the overall system can be placed
larbitrarily via 1l.s.v.f. along by forcing P(s)} in Eq. (2.36)

to be triangular. Moreo?er, if Rl = R(s) c=o is lower

(upper) definite, where R(s) is the system invariant matrix
of Eq. (2.35), then the following freedom in the choice of
errof coeffieient is maintzined by choosing P(s} lower (upper)
triangular.

(1) Elements of K1 can be chosen érbitrafily, for 1 > § (4 < 1),
Pfovided the elements (kij%_of Kl are so chosen as to force
Kl to be a lower {upper) definite matrix.

(2) Uj adaition error coefficients can be arbitrarily assigned
for those elements tij(s) of the overall transfer matrix T(s)

for which 1 » 3 {1 <« 3.
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Throughout the statement of the above theorem, the expression in paren-

thesis corresponds to R, being an upper definite matrix. DNotice that if

1

Rl is definite nonsingular, {(i.e., is both lower and upper nonsingular)
then P(s) could be chosen -either upper triangular or lower triangular.
This results in additional design freedom, as illustrated in the example
of Section 5.5.

Also notice that since P(s) is forced to be trianguiaf‘and since
the ith diagonal element in P(s) is chosen.to be a polynomial of degree
Gi (essential for choosing all n poles), P(s) is automatically forced to

be column proper. Thus, P(s) as specified aﬁove is realizable by linear

state variable feedback alone.

Proof of Theorem 5.1: The first-parﬁ of the theorem is proved
by noticing that if the system is contrcllable, then the |
Lunenberger transformation of Section 2.3 can be found and the
overall transfer matrix of the system can be written as
T(s) = R(s) Pﬁl(s) as given by Eq.l(2.34). Thus, all n poles
can be placed arbitrarily simply by forcing P(s) triangular
with ith diagonél term a polynomial of degree Oy where the
9y ﬁre specified by Eg. {2.8). But éuch a Pts) is realizable
by l.s.v.£f. alone becéuse it is coiumn proper and ith column
has the ith diagonal term as the highest degree polynomial in
it. Thus, the l.s.v.f., pair (F,G) can be found by simply
equating the desired P(s) with the ome in Egq. (2.36).

The second part of the theorem is provedrby showing that

the off diagonal nonzeroc terms in P(s) can be used to speecify
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.tﬁe error cogfficients of the corresponding terms in the
transfer matrix. Conversely, -it is shown that the off
diagonal nonzero terms in P(é) are calculated for any
.arbitrary choice of the errar coefficients as specified in the
theorem. This is accomplished in two parts. First, the ma;rix
Pl, the first component of P(s), is determined. Notice that
to specify all n poles, the diagonal terms in the triangular
matrix.P(s) are specified to within 2 constant only. This
gives extra freedom, i.e., the first error coeffici;nt can be
-specified even for the diagonal terms in T(sj. Thu;, P1 is
determined first. Next, the remaining components of P(s) are
determined one by one. WNotice that only terms on one side of
the diagonal need be determined because the diagenal terms are

now completely specified and the terms on the other side of

diagonal terms are specified to be identically =zero.

The theorem is proved for R, an upper definite matrix. The

1

proof for Rl lower definite can be developed on the same lines. For Rl

upper definite, P(s) is forced_to‘be upper triangular and, hence, P],

P -.. are all upper triangular matrices.

2,
To determine Pl, consider Eq. (3.19) for r = o, which is as

follows:
K,P = R, ‘ (3.19)

where Kl’ Pl and Rl.are all mxm constant matriees.
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Now, consider the ith column of both sides of the above -equa-
tion. Since P1 is an upper triangular matrix, the ith column is
simpiy

1 m. r J _ i
[x™ ... k]l 1 [r 1

L=

s

The above could be simplified as follows, where zero terms have been

dropped;

Next, consider the top i rows and the remaining m-1i rows of the above

equation separately as follows:

kyp e kg Pig 14
k ees K., P, Tr,.
'il ii 1 ii 1 ii 1 (5.1)



and ' Kigg 1 o Rq41 4| [P1g Ti414
km 1 e km il {Pii Tw i
L R A ] (5.2)

Now, Equations ‘(5.1) and (5.2) must be solved for i = 1, 2

Substitution of i = 1 in Equations (5.1) and (5.2), respectively gives

(eyp2y (Pypdy = (rpgdy
and
k21 21|
. (rPypdy = §°
kml Tl
1 1
klE
Since R (s) and, hence, Rl are already known, (Pll)l and . are
k
Im 1
are uniquely determined for any nonzero choice of (kll)l.
Equation (5.1) can next be solved for i = 2 to give
k11 klz—l ‘{"12 T12
k k ’ b) T,
21 ‘22|, {P22j, 22},
P12 .
from which "l is uniquely determined for any choice of (klz}l and
P,. ' ' ‘
{P22],

110
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R kll k12 S - 2 :
(k22)1 which keeps . . a nonsingular matrix. Notice that since
21 22 1
Rl is upper definite matrix rll is independent of r12 . -Hence,'by
f12 ' T22

1 1

considering the first two rows and top two columns of Eq. (3.19), it is

. Piaf . . Pra| ., -y
easily seen that is independent of which in turn implies

P
, 22 0
(py,); # 0. t - t

If m > 2, one would need to solve Eq. (5.2) for the remaining

unspecifiable elements in the second column of kl. .This can be done by

splitting the left side of Eq. (5.2) into two parts as follows

Kier 1 0 Kigg 41 {P1g kirl 4 Ti+1,i

i~1 i km i

vee kO,
m 1 m i-1 1 11 1 1

and the above can be rewritten as follows

kya,1 i1 4 kiv1 1 oo Kip i-1| {P1 -l
. 1 . . ‘

T o (p. ) . :

L H Thoi k1 kn1-1 | [Pi-1 1

- 1 : 1 : SN} 1y

(5.3)

Also, Egq. (5.1) can be rewritten as follows
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a-1
P11 kip oere Ry T1i
) Ak, k, T, .
ii 1 il | ii 1;_1 (5.4)

-

Thus solving Egq. (5.3) for i = 2, gives the remaining elements of the

second column of'kl.'

The above result can be used to solve Eq. (5.4) for 1 = 3, and
the results could then be used to calculate the remaining elements of
the third column of kl’ if m > 3. This seqﬁénce is repeéted until Eq.
(5.4) is solved for i = m Which gives the desired.upper triangﬁlar Py
for the desired upper triangular portion of kl (including the diagonal
terms),

Once again, it can be seen ffom Eq. (5.4} that a unique solution
of Eq. (5.4)‘requires that elements in Kl be chosen suéh that K1 is an
upper definite matrix. Similarly, a unique solution of Eq. (5.3)
requires that (pii)1 # 0, which is obtained only if Rl is upper definite.
This proves part (1) of Thecrem (5.1).

To prove the second part of the theorem,that is, that the remain-
ing components of P(s) are uniquely determined.by an arbitrary choice
of corresponding components of T(s), consider Eq. (3.19) for r > 1,

whiech is given below as

K P =Q_ +K_ P (3.19)
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Notice that if the above equation is solved in sequence for

r=1, 2, ..., then Qr is always known.- Also, P. and K. are completely

1 1

known from above, and the diagonal terms in Pr are completely known

+1
because of the fact that the diagonal terms in P(s) are now completely

specified. Finally, P is upper triangular because P{s) is assumed

r+l
to be upper triangular. Thus, it suffices to prove that the terms above
the diagonal term in Pr+1 and terms below and including diagonal terms
in Kr+1 are uniquely determined for arbitrarily specified terms above

the diagonal in Kr+1' To see this, let j = r+l and rewrite the above

equation as follows:
Kle =.Qr'+ KjPl {(5.5)

Consider the ith column of both sides of the above equation which is

given as follows:

1 LTS U T | 1 m,r
[kl LR 1"1] Pli - [qr] + [kj R kj] pli
Pyi Pii
4] 0
. | o
- j 0 1. " (5.6)

Using identity (4.1), the above equaticn could be written as follows:
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U S I P [ki](pii)j +rd™ @0 = 1l +
3
[k; kji’l] R [kji] (0.0 + [kji"‘l k?] ?
1;1—'1 iy %
(5.7)
which can be simplified to give
R s I U IR P Ul S S TS QUHIC
Pi-1 4 Pi 11

Now, break the above Eq, (5.8) into two parts.

1

(5.8}

1. Recombine the last two terms of the right side of the equation

. and consider the top (i~1) rows of the both sides cf the

equation thus obtained. The following results

114
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Moo Bga | P [-kli %
- M 4+ : . =
. [ . (pil)j .
k ves Kk, T ; k q .
1-1 1 11 1-1], [P1-2 4 -1}, i1 i)
k)1 k14 P13
+ . .

K. . k P..
L i1 1 ... i-1 {j i), . A (5.9)
2. Again, recombine the first two terms of the left side of

Eq. (5.8) and consider the last m—i+l rows of the Tesult.

The following equation is obtained.

kg woe Rygl Py 94 Kip oo By g9 |P1d kig
= | + + (pii)l
Kottt Roa] {Pigf. |Tms Sa1 0 Kpoao1| Pyt g kot
1 3 r J
(5.10)

Equations (5.8), (5.9), and (5.10), when solved in sequence for
i=1, 2, ... m, yvyield a complete solution as follows.

If [p;] the ith column of P,, 1s completely specified, then [k;}

j!

is complétely and uniquely determined by using Eq. (5.8), since every-

thing else in the equation is known and (pii)l # 0.
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If [p?]'is not known compleﬁely, then the on}y unknown pgrt is
the terms above the diagonal term in that column which could be uniquely
determined by using Eq. (5.9) for corresponding arbitrarily specified
terms in [k;]. This is so because all other terms are known in Eq. (5.9),
and since Kl being an upper definite matrix, inverse of its upper sub-
matrix exists.

Finally, the remaining portion of the ith column ofﬂkj is
uniquely determined from Eq. (5.10) because (pii)l # 0 and all other
quantities are known.

“Thus, the ith column of P, and K, are uniquely determined for

h| 3
arbitrary above the diagonal terms in [k;]. Incrementing i and repeating

the procedure until 1 = m, cdmpletely specifies Pj with %i as stated

in the theorem, Next, increment r, and solve for the unknown part

of the next higher componeﬁt of P(s) until all the components are deter-
mined. The F(s) so obtained remains column proper with the degree of the
highest degree polynomial in ith column being o, Heﬁce, the 1.s.v.f.
pair {F,G} can be found to realize the above P(s), which in turn forces
all the n poles of the system as desired and achieves eertain other
desired propetties as specified in terms of error coefficients.

The theorem is thus proved for the case of R, a upper definite

1

matrix. For the case of R, a lower definite matrix one can proceed

1

similarly by forecing P(s) to be a lower triangular matrix. The equations

involved in solving for the components of P{s) are given below without

proof.
To calculate Pl and Kl, let 2 = m—i+]l and solve the fellowing
z2guations in sequence for 1 = 1, 2 . il
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(5.11)

k£—l m Pm E_J

(5.12)

The use of Equations (5.11) aﬁd (5.12) -in solving for Pl and unknown

part of k, is further demonstrated via example of Section 5.5.

1

To solve for the unknown parts of Pj and R&, let & = m-i+1 and

proceed in sequence for

i=1,2 ...

Tt.

If at any point [pz] is completely specified, then determine
i P

[k?] from the following

[k

.k

Pog

m%Jj

- la,]-Tk;

2+]1 m

cm 2y

(5.13)
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Otherwise, calculate unspecified parts of p? for corresponding

arbitrary elements in k; as follows:

TS ¥
Pot1,s Kotl 241 ' B4l m Ger1 2 koot 200" Roel m| {Pes
. - J 4
pm L km 241 km m qm 2 km L km m me
k] ( 1 { r 7 1
k,H-l ')
j%n 2 ’
1 ] (5.14)

and, then, finally find unspecifiabié.pérts of k? using the following

eguatiocon.

K (T k )

1% 1% 1m Pzil 914, o+l

1 . . :
== ——-——-—-——ﬁ . . — -

(Pyglq 4

Kog koe Kom Pogl. % Py
“y \ 1 i r 1)

(5.15)

In all of fhe above equations & = m-itl, and one must proceed sequen-
tially for i =1, 2 ... m as schcown in the =xample of Section 5.35.

The proof of the theorem is thus complete. In the next section
a step-by-step design procedure is ogtlined which is used in a subse-

guent example.
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5.4 Summary of the Design Procedure

The statement and proof of Theorem 5.1 has resulted in.design
constraints and design procedure. The constraints are summarized below
énd are foilowed by step~by-step design procedure for quick reference.

The main advantage of the design method described in this section
is that all the n poles of overall system are specified (fixed) in
advance by forcing P(s) a triangular matrix and by specifying dll1 diag-
onal terms to within a constant. In addition, if R(s) meets certain
prespecified conditions, then additional error coefficients can be
épecified for those terms in T(s) for which corresponding terms in P(s)
are free, Thus, if P(s) is forced to be a lower (upper) triangular
matrix, then one has the following information:

1. The terms above (below) the diagonal terms in P(s) are fofced

‘to be zero and, hence, for corfesponding above (below} the

diagonal terms in T(s) no error coefficients can be specified.

2. The diagonal terms are fixed to within a constant, and thus
these constants can be used to specify the first error
coefficlents (position error coefficients) of the diagonal

terms in T(s).

3. The terms below (above) the diagonal terms in P{s) are free
polynomials of degree < oy for the itﬁ column in P(s), and
hénce can be.used to specify o, more error coefficients for

i

the terms in ith column of T(s).

Thus, for each component of P{s) except for Pl only the terms below

{above) the diagonal are unknown and all other terms are known. For
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P1 all terms below {(above) and igcluding the diagonal terms are unknown
and the rest are identically zero. For K1 all terms below (above) and
including the diagonal terms can be specified as desired provided they
aré specified in such a way as to force Kl lower (upper) definite. For
Kj, J > 2 only terms corresponding to the free elements in Pj can be
specified and the rest must be determined. -

The step-by-step procedure below utilizes the above information
and summarizes the steps involved in the design.

Steps 1-5: These steps are exactly the same as those . given for
the design method of the last chapter. These consist of deriving the
feedback invariants of the system.

Step 6: Break R(s) in its components and examine,Rl. If Rl is
lower (upper) definite, choose P(s) lower (upper) triangular. If Rl is
definite nonsingular P(s) could be chosen either lower or upper triangu-
lar, whichevér form is more useful, Go to Step 8. |

Step 7: 1If Rl is neither upper triangular ner lower triangular,
then a change in the names of the inputs or outputs might do the job in
most cases. If so, repeat Steps 1 through 6.

Step 8: Determine P, and the unspecifiable portion of K1 by

1

using Equations (5.3) and (5.4) as described in the last section.
[Use Equations (5.11) and (5.12) for lower triangular P(s).]
Step 9: Determine the diagbnal terms of P(s) from the knowledge

of the diagonal terms in P The diagonal terms in P(s) are specified

1
to within a constant and these constants can be determined by comparing

them with the-diagonal terms of Pl.



121
Sfep 10: .Find the complete Pj and Kj by using Equations (5.8),
(5.9) and (5.10) and solving for i = 1, 2 ... m in sequence. [Use
Equations (5.13), (5.14), and (5.15) for P(s) lower triangular.] Solve
for j =1, 2 ... until all componenté of Pj are completely kncwn.
Step 11: Find the closed loop transfer matrix T(s) = R(S)P_l(s)
és both R{s) and P(s) are now completely known.

Step 12: Find the l.s.v.f. pair {F,G} .to realize this T(s) using

Eq. (2.36).

This completes the design. In the next section the example of the last

chapter is reworked using the new design method of this chapter.

5.5 Example 5.1

Consider the same system as in the example of the last chapter.
Since Steps 1 through 5 in the pole fixing method are exactly the same .
as in design method of the last chapter, the results of these steps

are.summarized below. TFor details, see Section 4.5.
Step 1: g, =2,0,=1
Step 2: The transformation matrix Q dis

- .25 0.125 0
Q= | 1.25 ~.125 0

0 0 1.0



Step 3:
S

Step 4:
R(s)
P(s)
Step 5: DBreak the

Maclaurin series.

Step 6:

Rl = R(g)

Similarly,

s 0
= )S(S)= 5 0
0 s :
' ' 0 1
s+1 G
A
= §(s) =
2{=+5) 1
l '52 4+ h, .s + h d. .s +.h
%11 12 11 125 T M3
4. s +h s +h.  -d.s+h
21 22 21 22 23 J
elements of the desired transfer matrix in their
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This is done in Section 4.5, and is not repeated here,

s+1 0
1 0
Y 16 1
2(s+5) 1 ‘ _ ’
5=0 (5.18)
1 ol
, Ry =R, = =0
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By inspection, R is definite nonsingular matrik and, hence, ié
both lower and upper nonsingﬁlar'(Def;.5.l). P(s) could thus be forced
either lower or upper definite. As mentioned earlier, this is an added
advantage. Since Gl = 2 and 52 =.1, forcing P(s) to be lower triangular
results in greater design freedom because for t21(s), oy +.1 = 3. Hence,
three error ccefficients can be chosen. By forcing P(s) upper triangular,

(s).

. only %, + 1 = 2 error coefficients can be freely'specified fb’r“t'l2
So unless realization of tlz(s} is more important than the realization
of t21(s)’ P(s)} should be chgsen lower triangular. For this example
P(s) is forced to be a lower triangular matrii. |

As before, assume that the transfer matrix of Eq. (4.29) is still
the desired transfer matrix but now the emphasis is on the poles of diago-
nal terms. It is desired that the overall system poles be the poles of
tll(s) and tzz(s) in Eq. (4.29). Siﬁﬁe P(s) is forced to be lower tri-

angular,the above is realized by the following choice of P(s)

d11(5+2)(s+3) 0

P(s) =

2
i 9215 * Byps thy) dzz(s““)J (5.17)

In the above dii and hij are as defined in Step 4.
The desired Ki's are given by Eq. (4.30). But, as mentioned in

Theorem 5.1, choice of the pole positions restricts the allowable free-

dom of the Ki's as follows:

S -

P I P
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1. only the-glements in Kl for which 1 > j can be chesen
arbitrarily;
2. for (i,j)th element in the transfer matrix, only Gj additional

error coefficients can be chosen arbitrarily for 1 > j.

Thus, the specifiable part of the desired Ki's are given below
(5.18)
where % indicates unspecifiable element.

Step 7:

Since Rl is nonsingular definite, this step is not necessary.

\Step 8:
Since P(s) is forced to be a lower triangular matrix, Eq. (5.11)
and (5.12) are used to solve for Pl and Kl. Also, since m=2, these

equations need be solved only for i = 1,2 but in sequence.

VSolving Eq. (5.11) for i = 1 gives & = m~i+l = 2 and hence

-1
(o) = (kgp)y™ (Tpp)4

(1.07r1.0) = 1.0

and solving Eq. (5.12) for i = 1 gives 2 = m-i + 1 = 2. Hence

li
<

N . 1
(kpp)y = (), ISP p 103



For i = 2, & = m=it+l = 1, and hence from Eq. (5.11)

— .1_1
P11 kip o Reop 1
P k., k T
21], 21 "22 21
) -1
1 0] [1 1
1 1 [10] 9 -

Thus, P1 and Kl re completely known and are given as follows

9 1] . 1 1 (5.19)

Step 9:

From Eq. (5.17),

= P(s)

Il

P
1 s=0 h. 4d

If this matrix is compared with Eq. (5.19), the following is readily

obtained

d,, = 1/6, d

11 = 1/4, h,, =9

22 21
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Substituting in Eq. (5.17) completely specifies the diagonal terms of

P(s) as follows

1/6 (s+2){(s+3) ]

P(s) = 2
d2ls + h225.+_9 1/4(s+4)
) .
1+ 5/6s +1/63s 0 -
) 9 + h. s + d 32 -1 + 1/4 s
22 21
Hence
10 83 0 17 0
P, = , P, = , P, =
oo 1 2 lh,, .25 > la, O
{5.20)
Step 10:

Once again, since P(s) is forced to be a lower triangular matrix,
Eq. (5.13), (5.14) and (5.15) are used to determine the remaining
unknown and unspecifiable components of P(s) and T(s).

To find P2 and KZ’ solve these equations for j=2. For i = 1,
% = m-i+l = 2, But [pg] is completely known from Eq. (5.19) and, hence

[kg] is found directly from Eq. (5.}3).

2 1 2 2
[k51 = z;;;jz'{[kl](Pzz)z ~ [q;1}
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Also, from Eq. (3.19) and (5.16)

1 0
Q, =R, =
1 2 2 0
Hence,
0 0
(k2] = + {] .25)| =
11 .25 (5.21)

m-i+1l = 1 and hence from Eq. (5.14)

o]
Q
(a1
[
[
)
-
*
I

. P
-1 - 11
‘(p21>2 - (kzz)l (q21)l + [k21 k22]2 Poy - (kZl)l(Pll)2

Notice that (k has been obtained in Eq. (5.21), (kzl)2 is the arbi-

22)2

trary {desired)} error coefficients specified in Eq. (5.18) and all

other elements quantities on the right are known. Hence

- (17
(le)z = (1) L {2 + [.7 .25] {9} - (l)(.83)}

4.12

Finally, the unknown part of K2 is determined by solving Eq. (5.15)

for 1 = 2.
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For i = 2, £ = m-i+l = 1 and hence

| P
_ 1 lll _ _
122 =G [k Kyl (41907 = Ckyp)p(Pyydy
11’1 P J
- 12
1 .83]
=1 {0 0l |- @) - (0)(9)
4.12]
= .83 -1=- ,17
T‘nerP2 and K2 matrices are known completely-as given below
83 0 - -.17 0
P2 = N Kz =
4.12 25| : 0.7 .25] (5.22)
At last, proceed to find elements jin P3 and K3. To do that, first
calculate Q2 as given by Egq. (3.19)
Qp = Ry + KoPy
-.17 0 .83 o] -.139 0] :
=0 + =
0.7 .25 4,12 .ZSJ 1.613 .062J (5.23)

For i =1, & = m—i+l = 2 and since [p2] is known, [kz] is directl
, e lpy 3 J

calclated by solving Eq. (5.13) for j = 3
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2 1
(p22)1

ool Lo
(0) - =
1 .062 -.062|

2 2

]
=

For i = 2, £ = m~i+l = 1 and the unspecified part of P, may be calcu-

3
lated by solving Eq. (5.14) for j = 3

o) = G ey + e, k1. | 2 (k)()i
P13 2271 (V2172 21 2243 2171'P1173
' Pay
LSy
1 "1}
= (1) 1.613 + [-.39  ~.062] - (.17
e

= 1,613 - .39 - .5625 - .17 = .491

Notice that the solution of the above equation was made possible by

ensuring the inverse of'(kzz)l. Elements in Kl vwere so chosen as to

force Kl as obtained in Eq. (5.19) to be a lower definite matrix.

Finally, after substitution of the results obtained so far, the

only unknown part of K, is obtained by solving Eq. (5.15) for j = 3

3
and i = 2. For i = 2, L = m~i+l = 1 and hence
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! P11 '
Gqpds =y § e B2l R ST CPYP IO
1171 p
12
3
1 .17 -
491
= .17 + .139 = .31
Thus, P3 and K3 are completely known as
17 0 .31 0
P3 = 3 K3 =
491 0 -.39 -.062 (5.24)

The design is almost compete, except that one has to find the
pair {F,G} which corresponds té the components of P{s} obtained in
Equations (5.19), (5.22), and (5.24). This can be trivially done as
was done for the example (4.1). However, the first order of business
is to check whether the transfer matrix so obtained is satisfactorily

close to the one wanted. This is done as follows:

T(s) = R(s)P(s) *
s+l 07 [.17¢s? + 55 + 6) 0 -1
2(s+5) 1 | |.491s® 4 4.12s + 9 .25(s+4)
s+1 0] [.25(s+4) 0
= ? - . 2 /A
2(s+5) 1| 1-(.491s% 4 4125 + 9)  .17(s? + 5s + 6) |
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where A = 1/24 (5+2)(s+3)(s+4).

Hence

6(s+1)
(s+2)(s+3)

T(s) 2
24(.009s” + .38s + 1) 4
(s42) {s+3) (s+4) s+4

[ 6(stl) 0
(s+2) (s+3)
L216s% + 9.02s424 &

| (s+2) (s43) (s¥4) s+ . (5.25)

Once again the transfer matrix obtained above could be compared
with the one desired as giveﬁ in Eq. (4.29), and repeated here for

convenience.

6(s+1) 0;6(s+1)

(s5+2) (s+3) (s+2) (s+3)
T(s) = )
_ o A
(s+2) {s+5) s+4 : (5.26)

Since the emphasis is on the poles of the diagonal terms, one
can see they are exactly at the desired place. However, this is possible
only by the sacrifice of the term tlz(s)rin Eq. (5.26). The situations
in which the off diagonal terms come out to be zero is a special case,
as is discussed in the next section. The term t21(s) in the transfer ma-
t?ix qf Eq. (5.25) has the same generalized error coefficients as speci-

fied by the corresponding term in desired transfer matrix in Eq. {5.28).
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However, the pole positions of t21(s) are not the same as desired., It
is up to the designer to test this pransfer function to see if its
transient response is satisfactory and within his ;olerance limits.
The step responses of the two are compared in Fig. 5.1.

If the transfer matrix obtained above is satisfactory, the
pair {F,G} necessary to realize it are easily found by proceeding on
exactly the same lines as was done for example 4.1. Here, only the

results are given for the sake of completeness.

1.5 -.25 0
F = .
-2.21 -2.,19 -2
6 0
G = .
-11.8 4 (5.27)

In the next section some special case are discussed.

5.6 Special Cases

5.6.1 The Case of Triangular Deccupnling

It is seen in Example 5.1 that by fixing the poles in advance,
the resulting transfer matrix came out to be iowér triangular, even
though i;-was not intendéd so., This may have certain advantages if it
could be predicted in advance. The following lemma gives the suffi-

ciency condition for triangular decoupling.
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Lemma 5.1 If R(s) is upper (lower) triangular, then T(s)
is upper (lower) triangular decoupled by choosing F(s)
upper (lower) triamgular, provided Rl = R(s) s=0 is

nousingular.

Proof: If P(s) is upper (lower) triangular, then P-l(s)
is also upper (lower) trianmgular, and hence T(s) = R(s)
Pnl(s) is also upper (lower) triangulaf. This together
with Theorem 5.1 proves the lemma gecause R{s)} triangular

and R, nonsingular implies R, is absolutely nonsingular

| 1 ' 1
[Definition 5.1 in Section 5.2].

The main advantage gained by above is that instead of having no control
over the one side of the diagonal transfer functions (Theorem 5.2},
they_can be forced to be zero.

Since R(s) is completely known in advance before any actual
desdign is attempted, it could be easily found whetherrR(s) is a tri-
angular matrix or can be made triangular by simple changes in the names
of inputs and outputs. Particularly if the open loop system is coupled
in one direction only, then a change in the names of Inputs and out-
puts would make -R(s) a triangular matrix. Of course; a change in the
output matrix can cause a significant change in R(s). If such a bhange
is not intolerable, then it might be worth forcing R(s) triangular.

Thus, if R(s) is triamgular, then the designer knows in advance
thét by using the pole fixing method, a triangular transfer matrix design 4

can be obtained. This has distinct advantage over comventional decoupled
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design where only diagonal transfer functions are nonzero and all other

transfer furctions are forced to zero.

5.6.,2 The Minimum Constraint Case

The case in which there is a minimal constraint on the general-
ized error coefficient is stated through the following corollary.

Corollary 5.1: If all o's are equal, i.e., gy =0, = e

=0, =0 then for each transfer function in the transfer

matrix T(s), ¢ + 1 arbitrary generalized error coefficients

can be realized if:

1. Kl is chosen ﬁonsingular. (This is a necessary condition

for the system to be stable and to have nonsingular transfer

matrix as stated in Theorem 3.1.)

"2, K is chosen so that PG

o+l 41 18 nonsingular.

Proof: The proof follows from Theorem 4.1. In addition, note

that for any choice of P K is uniquely determined via

g+1* Tg+l

Eq. (3.19), since K, and, hence, P, are nonsingular. This

1 1

guarantees that there are many sets of KU+1 which result in

nonsingular Po+1'

This case of equal ¢'s is mentioﬂed here for its academic
value oqiy. In practice, the ¢'s, even though non-unique are feed-
back invariants. Thus, if n is not an integral multiple of m, it is
impossible to make them equal without adding dypnamics to the system.

The case in which dynamics are added to the system is not considered
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in this study and in fact, has been considered by others, the most

recent of which is the work of Wolowich [1973].

5.7 Sﬁmma:y

In this chapter a new design method called the pole fixing
method is used for the synthesis of multivariable systems. In many
cases the pole fixing method can be succeasfully used for the design
of multivariable systems where the conventional design methods or
the error coefficient method of the last chapter fails. In this method
all the poles of the multivariable system are pre-assigned‘dnd the
zeros are adjusted to produce satisfactory steady state behavior. The
only disadvantage of the pole fixing method is that it puts new con-
straints on the feedback invariant part‘of the system, R(s)}. But it is
gseen that in many cases, simple changes in the.output matrix satisfy the

artificial constraints introduced by the pole fixing design method.



CHAPTER &
SUMMARY AND CONCLUSION,

This chapter summarizes the results of this study and pertinent
results concerning linear state variable feedback (l.s.v.f.) invariants.
Some areas of further research in connection with this study are also

indicated.

6.1 Summary

Linear state variable feedback has. been usgd'in the design of
multivariable systems. Multivariable systems differ from the scalar
case in that l.s.v.f. affects not only the poig positions, but also
directly affects the zeros because of the c0up1ing between the sub-
systemé.

The l.s.v.f. invariants of multivariable systems were not known
completely untii recently. Wolowich [1972] introduced a complete set
of 1.s.v.f, invariants for multivariable systems for the first time.
He utilized the structure of multivariable systems to derive l.s.v.f.
invariants and, in turn, used l.s.v.f. invariants te derive the neces-
sary and sufficient condition for exact m@dei matching. If l.s.v.f.
can be fpund, such that the closed loop response matches a pre-
.specified (model) résponse, then the plant (open loop system) is

said to match with the model,

137
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fhe necessary and sufficient conditions for.exact model matching
did not come as é relief to the designer. The shortcoming is that if
the necessary and sufficient conditions are not met, there is no way to
complete the design. One does not know what changes need to be made
in the design specification to satisfy the necessary and sufficient con-
ditions. Thus, the problem of designing a multivariable system using
1.s.v.f. where noninteraction is not a design criteria remained largely
unanswered. An exception is a very speclal case where the dynamics of
each element in any given row of the transfer matrix are the same except
for the gain [Ferg, 1971]. '

In this study two complete design procedures are developéd for
the first time for the design of multivariable systems incorporating
cross coupling using l.s.v.f. alone. Noninteraction is treated as a
special case of interaction. The main design equation is developed in
Chapter 3. fhe first design procedure using error coéfficients alone
as the design criteria is worked out in Chapter 4. This is followed
by a simple example to illustrate the method.

The generalized error coefficients represent the system input-
output relationship only after the system transients have decayed to
insignificant amplitudes. Here lies the ghorécoming of the error co-
efficient design method, since it does not take into account the
transient behavior of the system. 'To alleviate this problem the pole

fixing method is introduced. As the name suggests, all the poles of

the system are fixed in advance ensuring system stability and fast
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decaying transients. If the system satisfies certain sufficiency
conditions, then in addition to fixing all the poles at desired places,
some indirect control can be exercised over zeros. In addition; those
systems which cannot be decoupled cﬁn be designed using the pole fixing
method. Obviously, this method of design does not produce any uncontrol-
iable poles as does the noninteracting design.

The sufficiency conditions are variant under the change in sys-
tem optput-matrix. Thus, in many cases a simple operation like changing
the name of inputs or outputs could be enough to satisfy thg sufficiency
conditions. The application of the pole fixing method is illustrated by

working a simple example.

6.2 TFurther Research

Although this study provides two ‘design methods for the design
of multivariable systems. The following related‘topics merit further
research:

1. Establish additional definite relationships between the speci-
fiéble error coefficients, the poles of the overali system,land
the component matrices of the matrix P(s). The first of the
two design methods for the design of multivariaEle systems is
baséd uﬁon the assumption that the system input—output behavior
can be satiéfactorily described in terms of finite error co-
efficients. In many cases this muy not be true. In particular,
when a transfer function is expanded in terms of error coeffi-

cients, much of the information about the transient response is



lost bécause only a relatively small number of error coeffi-
cients are considered. Tﬁe transfer function camnnot always be
uniquely reconstructed only from the specification of these
error coefficients.

Investigate the relation between the components of a polynomial
matrix and its determinant. This is useful because poles of
the overall system are given by the zeros of determinant

P(s). The components of P(s) are.determined one by one. The
relation between the components of P{s) and its determinant
can then be used to determine whether the particular component
of P(s) is suitable enough for the design to proceed any fur-
ther. If not, the error coefficients could be suitably
changed before the design is complete. For example, the
constant term in the determinant of P(s) is given by the

determinant of P the first component of P(s).

1°
Partially or completely fix the poles of the“systems without
forcing P(s) a triangular matrig. By forcing P(s) a triangular
matrix the designer could of course fix all the poles of the
system in advance. But this has the disadvantage that control
is lost over the zeros of one sidé of diagonél terms in T(s).‘
Also, fixing all poles adds additional constraints which must
be satisfied. Thus, forcing P(s) to be triangular might be
over restrietive, Two obvious ways to proceed are to either

partially fix the poles or equivalently to find a way in which

P(s) is not forced to be a triangular matrix.
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4. Find the necessary condition for the design method to be
applicable., Theorem 4.1 and 5.1 provide only sufficient
conditions to complete the design. Upon investigation it
might turn out that some of the sufficiency conditions are
also necessary conditions.- The advantage of knowing the
necessary conditions is that the designer knows that he

is not being too conservative in designing the system.

{
It is seen that even though linear state variable feedback

(1.s.v.f.) can be successfully used for the design of multivériablel‘
systems, all of its implications in the design of tultivariable feed-
back have not been resolved. It is expec;ed that efforts of more fhan
just a few will be required béfore those working in the area feel that

the problém is solved. .
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